emUSB

USB Device stack

CPU-independent

User & Reference Guide

Document: UM09001
Software version: 2.40a

Revision: O
Date: January 10, 2014

O
/ SEGGER

A product of SEGGER Microcontroller GmbH & Co. KG

www.segger.com

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

Disclaimer

Specifications written in this document are believed to be accurate, but are not guar-
anteed to be entirely free of error. The information in this manual is subject to
change for functional or performance improvements without notice. Please make sure
your manual is the latest edition. While the information herein is assumed to be
accurate, SEGGER Microcontroller GmbH & Co. KG (SEGGER) assumes no responsibil-
ity for any errors or omissions. SEGGER makes and you receive no warranties or con-
ditions, express, implied, statutory or in any communication with you. SEGGER
specifically disclaims any implied warranty of merchantability or fitness for a particu-
lar purpose.

Copyright notice

You may not extract portions of this manual or modify the PDF file in any way without
the prior written permission of SEGGER. The software described in this document is
furnished under a license and may only be used or copied in accordance with the
terms of such a license.

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG, Hilden / Germany
Trademarks
Names mentioned in this manual may be trademarks of their respective companies.

Brand and product names are trademarks or registered trademarks of their respec-
tive holders.

Contact address
SEGGER Microcontroller GmbH & Co. KG

In den Weiden 11
D-40721 Hilden

Germany

Tel.+49 2103-2878-0

Fax.+49 2103-2878-28

E-mail: support@segger.com
Internet: http://www.segger.com

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

Manual versions

This manual describes the current software version. If any error occurs, inform us
and we will try to assist you as soon as possible.
Contact us for further information on topics or routines not yet specified.

Print date: January 10, 2014

Software | Revision Date | By Description

Update to latest software version.
Minor improvements.

131210 YR | Removed some typos.

131031 SR | Update to latest software version.

131021 SR | Update to latest software version.

131015 SR | Update to latest software version.

131004 YR | Update to latest software version.

130920 YR | Created a separate chapter for Bulk Host API V2.
130705 MD | Added MTP chapter.

Added the new Bulk Host API V2.
Removed some typos.

Added Certification chapter.
Added RNDIS chapter.
Updated available drivers.
Removed some typos.

Updated USB Core chapter:

* Added description for function:
USB__WriteEPOFromISR()
Removed some typos.

Updated CDC chapter:

* Added new function: USB_CDC_SetOnBreak()

* Updated the functions: USB_MSD_INST_DATA_DRIVER
Chapter Target USB driver:

* Added new drivers to the list.

Removed some typos.

Added new functions in USB Core chapter:

* USB_SetVendorRequestHook(), USB_SetlIsSelfPowered()
Updated the Product Ids in Chapter GettingTheTar-
getUp\Configuration.

Updated MSD chapter:

* Added new picture on front page.

* Updated chapter Overview

* Added new function: USB_MSD_Connect(),
USB_MSD_Disconnect(), USB_MSD_RequestDisconnect(),
USB_MSD_UpdateWriteProtect(),
USB_MSD_WaitForDisconnection(),

* Updated the functions: USB_MSD_INST_DATA_DRIVER
Updated the CDC chapter:

* Added new Ex-Functions

* Added new serial status functions.

Added new picture to the front page of chapter HID.
Update Printer Class chapter:

* Added new picture to the front page to the chapter

* Added new information to the USB_PRINTER_API.
Chapter Target USB driver:

* Added new drivers to the list.

2.40a

o

140110 YR

2.38f
2.38f
2.38e
2.38d
2.38c
2.38
internal

O Oo/o/ojo/o|Oo |~

internal 130410 YR

2.36 0 130208 YR

2.34 1 111116 YR

2.34 0 111111 SR

2.32 0 101206 SR

2.30 0 101022 SR | Added the function for remote wakeup.
2.27 0 100730 MD | Chapter "Printer Class" added.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

Software | Revision

Date

By

Description

2.26 1

090127

SR

Chapter USB core:

* Added new functions: USB_SetMaxPower(),
USB_SetOnRxEPO(), USB_SetOnSetupHook()
Chapter Bulk Communication:

* Added new functions:
USB_BULK_CancelRead()
USB_BULK_CancelWrite()
USB_BULK_ReadTimed()
USB_BULK_SetOnRXHook()
USB_BULK_WaitForTX()
USB_BULK_WaitForRX()
USB_BULK_WriteEx()
USB_BULK_WriteExTimed
USB_BULK_WriteNULLPacket()
USB_BULK_WriteTimed().

Chapter CDC:
* Added new functions:
* USB_CDC_CancelRead()
* USB_CDC_CancelWrite()
* USB_CDC_ReadTimed()
* USB_CDC_ReceiveTimed()
Updated indexes in chapter CDC, Bulk communication,
MSD, HID.

X X X X X X ¥ ¥ *

*

2.22 1

080917

SR/

Added new chapter Combining different USB components
(Multi-Interface)
All chapter reviewed and cleaned up.

2.22 0

080902

SR

Chapter USB core:

* Added new function USB_EnableIAD.
Chapter Bulk communication:

* Update description of USB_BULK_Receive.
Chapter MSD component:

* Updated "Final configuration".

* Updated "Class specific configuration functions.
Chapter CDC component:

* Added new functions: USB_CDC_ReadOverlapped(),
USB_CDC_WriteOverlapped(), USB_CDC_WaitForRx,
USB_CDC_WaitForTx().

Chapter Target USB driver:

* Updated available driver list.
Chapter FAQ:

* Added new

15.0 0

080403

SR

Update company’s address and legal form.

14.0 0

071204

SR

Chapter "Target USB driver":
* Updated "Writing your own driver":
- pfStallEP changed to pfSetClirStallEP.
- Added new driver ST STR91x.
- Added description for pfResetEP.
Chapter "Bulk Communication":
* Added new function: USB_BULK_Receive()
* Added new function:
USB_BULK_GetNumBytesInBuffer()

13.0 0

071005

SK

Chapter "Target USB driver":
* Section "Interrupt handling" added.

12.0 0

070706

SR

Chapter "USB core":

* Changed USB_GetStastus to USB_GetState
Chapter "MSD":

* "MSD_Start.c" changed to
"MSD_Start_StorageRAM.c"

* Added information to
"USB_MSD_INST_DATA_DRIVER"

* "Storage drivers supplied with this release" updated.
Chapter "Bulk communication":

* Changed text for USBBULK_GetMode/Ex.

UMO09001 User & Reference Guide for emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

Software

Revision

Date

By

Description

11.0

070704

SK

Chapter "Introduction":
* HID section added.
Chapter "USB Core":
* USB_GetState() added.
Chapter "HID":
* USBHID_Init() updated.
Chapter "Target OS Interface":
* USB_OS_Restorel() removed.
* USB_0OS_DI() removed.
Chapter "Target USB Driver":
* STR750 added.

10.0

070618

SK

Chapter "HID" added.
Chapter "USB Core" added.
Chapter "Bulk communication":
* USB core functions removed.
Chapter "Introduction":
* Section "Development environment" added.

9.0

070123

SK

emUSB components renamed:
* "emUSB with bulk component" to "emUSB-Bulk"
* "emUSB with MSD component" to "emUSB-MSD"
* "emUSB with CDC component" to "emUSB-CDC"
Chapter "Introduction":
* updated and enhanced
* emUSB-CDC added

8.0

070121

SK

Product name changed from "USB-Stack" to "emUSB".
Various changes in layout and structure.
Chapter "About" added.
Chapter "Introduction":

* updated

* "emUSB structure" graphic added.
Chapter "Bulk communication":

* USB_SetClassRequestHook():

- Function description added.

Chapter "CDC":

* Head of description of USB_CDC_LINE_CODING
changed.

7.0

070109

SR

Added new chapter CDC.

6.0

061221

SR

Added new USBBulk HOST-API function
USBBULK_SetUSBId().
Company description added

5.0

061220

SR

Changed chapter 1.1.1 USB-Bulk stack:

Info reg. availability of the Host-driver source.
Updated chapter title "Getting the target up"

Updated chapter 1.1.2.3 Features

Updated chapter 1 - Information of max. data transfer
rates updated.

4.0

061212

SR

Added chapter "Mass Storage Device"
Changed chapter Background info:

-Updated
Changed chapter title "Configuring the target" to "Getting
the target up"
Moved any related information of files provided with the
USB stack to "Getting the target up"

3.0

061120

SR

Added the extended HOST API functionality to manual

2.0

061115

SR

Updated chapter:
Target USB driver
Bulk Communication

1.0

060808

00

Initial Version

UMO09001 User & Reference Guide for emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

About this document

Assumptions

This document assumes that you already have a solid knowledge of the following:

e The software tools used for building your application (assembler, linker, C com-
piler)

e The C programming language
The target processor
DOS command line.

If you feel that your knowledge of C is not sufficient, we recommend The C Program-
ming Language by Kernighan and Richie (ISBN 0-13-1103628), which describes the
standard in C-programming and, in newer editions, also covers the ANSI C standard.
How to use this manual

This manual explains all the functions and macros that emUSB offers. It assumes you
have a working knowledge of the C language. Knowledge of assembly programming
is not required.

Typographic conventions for syntax

This manual uses the following typographic conventions:

Style Used for
Body Body text.
Keyword Text t_hat you entgr at the comm_and—pljompt or that appears on
the display (that is system functions, file- or pathnames).
Parameter Parameters in API functions.
Sample Sample code in program examples.

Sample comment Comments in program examples.

Reference to chapters, sections, tables and figures or other docu-

Reference
ments.

GUIElement Buttons, dialog boxes, menu names, menu commands.

Emphasis Very important sections

Table 1.1: Typographic conventions

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

SEGGER Microcontroller GmbH & Co. KG develops
and distributes software development tools and ANSI C
software components (middleware) for embedded sys-
tems in several industries such as telecom, medical
technology, consumer electronics, automotive industry
and industrial automation.

/ SEGGER
SEGGER'’s intention is to cut software development time

for embedded applications by offering compact flexible and easy to use middleware,
allowing developers to concentrate on their application.

Our most popular products are emWin, a universal graphic software package for embed-
ded applications, and embQOS, a small yet efficient real-time kernel. emWin, written
entirely in ANSI C, can easily be used on any CPU and most any display. It is comple-
mented by the available PC tools: Bitmap Converter, Font Converter, Simulator and
Viewer. embOS supports most 8/16/32-bit CPUs. Its small memory footprint makes it
suitable for single-chip applications.

Apart from its main focus on software tools, SEGGER develops and produces programming
tools for flash micro controllers, as well as J-Link, a JTAG emulator to assist in develop-
ment, debugging and production, which has rapidly become the industry standard for

debug access to ARM cores.

Corporate Office:
http://www.segger.com

United States Office:
http://www.segger-us.com

EMBEDDED SOFTWARE
(Middleware)

emWin

Graphics software and GUI

emWin is designed to provide an effi-
cient, processor- and display control-
ler-independent graphical user
interface (GUI) for any application that
operates with a graphical display.

embOS

Real Time Operating System

embOS is an RTOS designed to offer
the benefits of a complete multitasking

system for hard real time applications
with minimal resources.

embOS/IP

TCP/IP stack

embOS/IP a high-performance TCP/IP
stack that has been optimized for
speed, versatility and a small memory
footprint.

emfFile

File system

emFile is an embedded file system with
F. FAT12, FAT16 and FAT32 support. Var-
ious Device drivers, e.g. for NAND and
NOR flashes, SD/MMC and Compact-
Flash cards, are available.

USB-Stack

USB device/host stack

A USB stack designed to work on any
embedded system with a USB control-
ler. Bulk communication and most stan-
dard device classes are supported.

ED

i

SEGGER TOOLS

Flasher

Flash programmer

Flash Programming tool primarily for micro con-
trollers.

J-Link
JTAG emulator for ARM cores
USB driven JTAG interface for ARM cores.

J-Trace

JTAG emulator with trace

USB driven JTAG interface for ARM cores with
Trace memory. supporting the ARM ETM (Embed-
ded Trace Macrocell).

J-Link / J-Trace Related Software
Add-on software to be used with SEGGER’s indus-
try standard JTAG emulator, this includes flash
programming software and flash breakpoints.

UMO09001 User & Reference Guide for emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

Table of Contents

N 1 11 o To [[1 0] o PP 15
1.1 L@ A YT L PP 16
1.2 EMUSB fEATUMES ..ttt e e 16
1.3 (<1098 157 = N elo] g 0] o o] 1=T 1 =3 P 17
1.3.1 EMUSB-BUIK e e 18
1.3.1.1 Purpose of @mMUSB-BUIK......ciiiiiiii i s 18
1.3.2 EMUS B MO D Lottt e 19
1.3.2.1 PUrpose Of @MUSB-MSDuiiiiiiiiii i s e e a e e areanans 19
1.3.2.2 Typical appliCatioNS .. vt 19
1.3.2.3 EMUSB-MSD fEatUMES ... vttt e e aneeaes 19
1.3.2.4 [Lo) e (oY | Y] o PP 19
1.3.3 EMUS B -CDC ittt i 21
1.3.3.1 Typical @appPliCationNS .. ittt e e 21
1.3.4 EMUS B -HI D ..t e 22
1.3.4.1 Typical @appliCatioNS .. vttt e 22
1.3.5 (=] 018 1S = Rt o= S 23
1.3.5.1 Typical @appliCationNS .. it s 23
1.4 =T LU 1 =T 0 1= 1= 24
1.4.1 TaArget SY S M Lttt e 24
1.4.2 Development environment (COMPIler)cciiiiiiiiii i 24
1.5 T L o 0 Lol B = PP 25
1.5.1 Bulk communication COMPONENT ...viiiiiiii i e e eeeaens 26
1.5.2 115 2 l0] g a1 5] o 1= o | o 26
1.5.3 (OB T @R olo] 15 o] 1= o | o P 26
1.5.4 [1l Y5 oY oo i =T o X 26

2 Background iNfOrMELIONoooiiiiiiii e 29
2.1 LU 30
2.1.1 1Y 1 L A @ N = V=1 PP 30
2.1.2 Important USB Standard VersionSuiii i i i i v eae e as 30
2.1.3 USB System ArchiteCtUre . .cci i e 31
2.1.4 I LTSS (=L 14 0L 33
2.1.5 Setup phase / EnNUMErationooiiiiiiii e 33
2.1.6 (4 g0 Yo 18 Lot oy AV Z=T o T [o Y gl 1 10 =3 33
2.2 Predefined deviCe ClassSes. . ouuiiiii i e e ennennens 34
2.3 US B @NalyzZerS .ttt i i e 34
2.4] =] = (oL PP 34

I 1] 1] o T3 =T (=T o PRSP 35
3.1 How to setup your target System ..o i i e e 37
3.1.1 Upgrade a trial version available on the web with source code. 37
3.1.2 Upgrading an embOS Start project.....ccviiiiiiiiiiiii i e 38
3.1.3 Creating a project from scratChcooviiiiiiiiiii i 40
3.2 Select the start application. ... 41
3.3 Build the project and teSt if...iiiiiiiiii i 41
3.4 @0] o) o 18 1= u T o PP 42
3.4.1 General emUSB configuration funCtionsc.coiiiii i 43
3.4.2 Additional required configuration functions for emUSB-MSDcccvvvveennee. 48
3.4.3 D LT o] o] w0] =T 48

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

10

N U 1S = T 0T - 49
4.1 L 17T VT 50
4.2 TArgel AP .. e 51
4.2.1 0] = 3 o 1= 13 Lol {81 Lot oY 1 52
4.2.2 USB configuration fUNCEIONScoviieii e e 57
4.2.3 USB CONErOl fUNCEIONS 11ttt i i et et e e e s saa e e s saaareranaees 66
4.2.4 ULy = I 7Y 2N 6T Vot o o 1= 68
4.2.5 USB Remote wakeup fUNCLIONSovieiiie i e e e 69

5 BUIK COMMUNICALIONcittiiiieiiiiiie e e e e e et e e e e e e et e e e e e essaa e eeeeesaaaaeeaeennes 73
5.1 =Y =] Ll 0 10 11 = = T < 74
5.2 The Kernel mode driver (PC) ..ot e e ae s 74
5.2.1 WHhY iS @ driVer NECESSAINY? .ottt s s rar s e raas e ane s e aens 74
5.2.2 Supported PlatfiormS ... e 74
5.3 Installing the driVer ... e e eaeaas 74
5.3.1 Recompiling the driver ... e 77
5.3.2 B o LT L 1 78
5.3.3 (@foT 0] 1 Te U1 =] w Lo o FAF PP 79
5.4 Example application.....cooiiiiiii e 80
5.4.1 Running the example applications........cooiiiii i 81
5.4.2 Compiling the PC example applicationccviiiiiiiii e 83
5.5 Al AP .. e 84
5.5.1 Target interface function liSt ..o e 85
5.5.2 USB-BUIK fUNCEIONS 1ttt iiiii ittt i i s s e e et iae e s ranaeessasaeesannnns 86
5.5.3 [0 =) ur= T o Tt o 51 =T 106
5.6 [101 Y 108
5.6.1 L 101y AN = I = 109
5.6.2 USB-BUIK BasSiC fUNCEIONS . .t ittt it it i iiee st it esaisaeesesnseessansneessnns 111
5.6.3 USB-Bulk direct input/output fuNCtions.......c.ccoiiiiii s 115
5.6.4 USB-BUIk Control fUNCHIONS .. ittt i i i i e e s saanaeeaanas 121

B BUIK HOSE AP V2 ettt e e et e e e et e e e e e e et e e eb e e eaeeaasaenenes 139
6.1 BUIK HOSE AP V2 . i e e r e e e aaeas 140
6.1.1 BUlk HOSE APT V2 ISt . e e e e eaeas 141
6.1.2 USB-BUIK BasSiC fUNCEIONS . .uiuiiiiiiiiiiiieeiiiteessiissessiaseessanssssransssesrnnnsrsssnnns 143
6.1.3 USB-Bulk direct input/output functions........coooiiiiiiiiiii e 148
6.1.4 USB-BUlk Control fUNCEIONS .. ittt i i i s s sis s s sraane s ssnnaeeerannes 155
6.1.4.1 USBBULK_GetConfigDesCriptor() «ovuvreiirii i i i s i vieviee s enee s ennennennans 155
6.1.5 D= Y= T3 o ot o 61 T 178

7 Mass Storage Device Class (MSD)cccccuuiiiiiiiiiiiieie et 179
7.1 L 17T Y 180
7.2 (©fe] 0] To 8T r=] u o] o H PP 181
7.2.1 Initial configuration ..o e 181
7.2.2 Final configurationciiviii i e e s 181
7.2.3 Class specific configuration fuNCLIONSocciii i e 181
7.2.4 Running the example applicationcoviiiiiiiic e 186
7.2.4.1 MSD_Start_StorageRAM.c in detailc.cooviiiiiiiii e 186
7.3 Targel AP .. e 187
7.3.1 Y I 11 [o o o 1= 188
7.3.2 [=] o [T I Y 2 A T o Tt o £ o 194
7.3.3 D= Y= T o Tt o 61 =T 199
7.4 R0 T =T L= B Y= ol 206
7.4.1 General INfOrMAatioN . i i i i et 206
7.4.1.1 Supported StOrage LY PES ..viiiiiii i i 206
7.4.1.2 Storage drivers supplied with this release..........cccooiiiiiiii i 206
7.4.2 Interface fUNCLION 1St . uuiiiii i i e s e i r e raaaeeeas 206
7.4.3 USB_MSD_STORAGE_API in detail...c.coiiiiiii e e 207

User & reference manual for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

8 Media Transfer Protocol Class (MTP)....ccccioi i oo 215
8.1 L@ T YT PP 216
8.1.1 Getting access 0 fileS .ouuiriie i e 217
8.1.2 Additional iNformation . ..o 219
8.2 CONfIQUIAEION .o 220
8.2.1 Initial coNfiguIationcoce i e 220
8.2.2 Final configuration ... 220
8.2.3 Class specific configuration functions.......c.cooiiii i s 220
8.2.4 Running the sample applicationccoiiiiiiii 225
8.2.4.1 USB_MTP_Start.cin detailoviiiiiiiiiii i e e ees 225
8.3 TArget AP i 226
8.3.1 AP fUNCHIONS ettt i e 227
8.3.2 =Y = T o U o o 1 = 230
8.4 Yol r=Te LT I o Y= P 236
8.4.1 General iINformation ... i e 236
8.4.2 Interface funCtion list ..o 236
8.4.3 USB_MTP_STORAGE_API in detail....ccciieiiiii e 237

9 Communication DeVviCe Class (CDC).....uuuuuuuiiiiiieeeeeeeeeeeeeeeeeeeaaaissass s s e e e e e e aaeeeaaeennnne 253
9.1 L@ T YT PP 254
9.1.1 CONfIGUIATION e 254
9.2 The example appliCation ..o e 255
9.3 INStalling the AriVer ..o e aas 258
9.3.1 The (N Il e 261
9.3.2 Installation verificationc.oii i 262
9.3.3 Testing communication to the USB devicecoovvviiiiiiiiiiiii e 263
9.4 TArg et AP i e 266
9.4.1 Interface funChion list ..o 266
9.4.2 AP fUNCHIONS ettt e e 267
9.4.3 =Y ar= T o U o o 1 = 284

10 Human Interface Device Class (HID).......oooeviiiiiiiiiiiiiiie e 289
10.1 L@ N YT L 290
10.1.1 o =T ol /= T= Vo [T [290
10.1.2 L8 /=T [0 o =T 291
3O A R 8 BT o D PP 291
10.1.2.2 "Vendor specCific HID S ..uiiriiiii i i s e e r e e e ane e 291
10.2 Background information ..o 292
10.2.1 (N e (=TT of T] W] = PR 292
3O 10720 I R o) 1 T <YYol o [o) o] o PP 292
3 O 19720 N7 ~U=To Yo o i« 1= 1= of T] o] PP 292
10.2.1.3 Physical desCriplor. it e e 293
10.3 CoNfIQUIATION . 294
10.3.1 Initial configurationo e 294
10.3.2 Final configuration ... 294
10.4 Example application ..o e 295
10.4.1 o 0 T 0 T =< 295
10.4.1.1 RunnNing the eXample ... 295
10.4.2 [10 T = . o 5 o 296
10.4.2.1 RunNNing the eXample ... s 296
10.4.2.2 Compiling the PC example applicationccooiiiiiiiiiiiiiiiic e 297
10.5 TArgeE AP i 298
10.5.1 Target interface function list........oooi i 298
10.5.2 USB-HID fUNCEIONS .t tiitiitiit ittt e e e e e e s e e a e re e aneeeanes 299
10.5.3 Data SErUCTUIES .. et e e e s st s s e e s ran e e s rannes 302
10.6 i 10 2] o 303
10.6.1 HOSt API fUNCEION liSt. ..ot e 304
10.6.2 USB-HID fUNCEIONS .ttt ittt it e s e e e e e e s e e e e e e e aneaneanes 305

0 R] 1 (=] G 4 = 1SR 317

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller Systeme GmbH

12

11.1 L@ V7T YT PR 318
11.1.1 (@fe] 0] 1 Te [U1 = w o] o AP PP 318
11.2 The example application......cviiiiii e 319
11.3 TArgel AP .. e 322
11.3.1 Interface funCtion list.. .o 322
11.3.2 AP fUNCHIONS ¢ttt e 323
11.3.3 (D= o B Lo B =T 325
12 Combining different USB components (Multi-Interface)..........cccccvvveveviiiiiiiiiinnnnn, 327
12.1 L@ Y7 YT L P 328
12.1.1 Single interface device ClasSesocieiiii i 329
12.1.2 Multiple interface device Classesuviiiiiiiii i i i s 330
12.1.3 AN B ol - T PP 330
12.2 (@fo] o] 1 Ts [U T = w o o IO 331
12.3 HOW £0 COMbBDINE . i e e 332
12.4 emUSB component specific modification........ccocviiiiiiiiiiiiiiii 334
12.4.1 BULK communication COMPONENTE.uiiiiiiiii i e r e s s rnee e e eaas 334
N I R B 1<V ol = I o [T PP 334
N N o [0 1Y = o [T PP 334
12.4.2 N1 2 ole T 10 Yo 1= o | 336
N A R B 1<V ol = I o [T 336
N A & [0 1=) = o [T 336
12.4.3 (OB T @R oo 1 o7 0] 1= o | o P 336
N T T R B 1<V ol = I o [T 336
N N T o [0 1) = Lo [P 336
12.4.4 [11 2ol 0T o =] o o 338
N s R B 1<V ol = I o [T PP 338
N N & (01 = o [T 338
13 Target OS INTEITACEccooiiiiiiii e e e e e e e e e eeeeeas 339
13.1 General iINfOrmMatioN . ..u e i e 340
13.1.1 Operating system support supplied with this releaseccoeviiiiiiiiiiin. 340
13.2 Interface funCion liSt.. .o s 341
13.3 = .0 o 1= 351
14 Target USB DIIVEI....ccoouiiiiiiiiiie ettt e e e e e e e et e e e e e e e e e e e e 355
14.1 General iINfOrmMatioN . ..uie i e 356
14.1.1 AVailable USB AriVers. i i iiis s v s e e s e s e s e ran e e enneaneenes 356
14.2 Adding @ driver t0 @mMUSBciiiiii i e 358
14.3 Interrupt handling ..o 361
14.3.1 ARM7 / ARMO DaSEA COMBS ciiiiiiiiiiiiiiie sttt i et st rreesssssiasssnssasraeeeens 361
14.3.1.1 ARM specific IRQ handler ... 362
14.3.1.2 Device specifics ATMEL ATO I CAPOX ..ttt i it i e aes 363
14.3.1.3 Device specifics ATMEL ATOLIRMO200uiiviiieiineiieenneranennernessernnssnernnsnneeness 363
14.3.1.4 Device specifics ATMEL ATO 1S AM 7 A .ot i e 363
14.3.1.5 Device specifics ATMEL AT91SAM7S64, AT91SAM7S5128, AT91SAM7S256 363
14.3.1.6 Device specifics ATMEL AT91SAM7X64, AT91SAM7X128, AT91SAM7X256 363
14.3.1.7 Device specifics ATMEL ATO1SAM7SE ..ottt i i e 363
14.3.1.8 Device specifics ATMEL ATO1SAMO260 ...oiviiiriiiiineieraneneinnerernnsrnernnsnneenens 363
14.3.1.9 Device specifics ATMEL ATOL1SAMO261 . .iiviiiiiiiiiieiieianeneinneiiernneseennenneannns 363
14.3.1.10 Device specifics ATMEL ATOL1SAMO263 ...iiuiiiiiiiiiieeieianereianeiieransrnernneaneanens 364
14.3.1.11 Device specifics ATMEL AT91SAMRL64, ATO1SAMRGAcvvvviiiiiiiiiiiiiennnennens 364
14.3.1.12 Device SpeCifiCs NXP LPC 214X ..uiiiuiiiiiii ittt i i et ree e aaes 365
14.3.1.13 Device SpecCifiCsS NXP LPC23XX +uuutiiriiriiinrnneineenneranssneransaneranssernnsssrnnsnsmnn 365
14.3.1.14 Device specifics NXP (formerly Sharp) LH79524/5 ... 365
14.3.1.15 Device specifics OKI 69Q62uiuiiiriiiiiiniineiieiineraeaaneraneaeranereraeeaerneeaeene 365
14.3.1.16 Device SpecCifiCsS ST STR7Z1X tivuiiiiieiiriiieiiseiieraneraesaneisnsaneransreransaernnaneenns 365
14.3.1.17 Device specificsS ST STR750 ...uiiiiieiiiiiiie s rarsnneraesanerneanneenens 365
14.3.1.18 Device specCifics ST STR750 ...uiiriiiiiiiiiiie s raeraae e ane e sanerneanneenens 365
14.4 WHEING YOUR OWN AEiVEE Lot ree e aas 366

User & reference manual for emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

14.4.1 USB initialization fuNCLioNSooiiiii i 368
14.4.2 General USB fUNCHIONS . ..uiiiii i e e e e aa s 369
14.4.3 General endpoint fUNCLIONS ... 371
14.4.4 Endpoint 0 (control endpoint) related functions............ccooioiiiiiiiiiiiiic i, 374
14.4.5 OUT-endpoint fUNCHIONS ..oviie e e e naaaens 375
14.4.6 IN-endpoint fUNCEIONS. ... et a e aeees 376
14.4.7 USB driver interrupt handlingcoooviiiiiii s 378

RS T ¥ o] Lo APPSR 379
15.1 Problems with tool chain (compiler, linker)c.coviiiiiiiiii 380
15.1.1 107e] 03101 1T gl ol = =] o HF PP 380
15.1.2 (@0eT0 0] oT1 (=T VY= T o ¥ o e =3 PP 380
15.1.3 100e] 0 a1 011 1] =T o /o] o= RPN 380
15.1.4 LinKer Problems ..o e 380
15.2 Problems With hardwWare/driVer . .oiuu i i i e r e raaaes 381
15.3 (©o] o) r= o1 Te I 8] o 0 Lo o 0 381

G O =Y 11 o> 1o] o S 383
16.1 What is the Windows Logo Certification and why

do I need it?384

16.2 CartifiCation Off el . . vt e 385
16.3 Vendor and ProdUcCE ID ...coiiiiiiiiiii i i i e e e 385
16.4 Certification without SEGGER Microcontroller.......ccooviiiiiiiiiiiiiiiiiiiiiiieeienn, 385
17 Performance & reSOUICE USAQEccceeiiieeeeeiiiitiniiaaaaaeeeeaaaaeeeeeeeesstnsssnnnaaaaaaaaaaaaaaees 387
17.1 1= 0 g Lo T VN o To] f o o o) o P 388
17.1.1 RO Lottt e 388
17.1.2 R A M . L1ttt 388
17.2 T 0 . = V= 389
G T O PPNt 391

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller Systeme GmbH

14

User & reference manual for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

15

Chapter 1

Introduction

This chapter will give a short introduction to emUSB, covering generic bulk, Mass
Storage Device (MSD), Communication Device Class (CDC), Human Interface Device

(HID) and Printer Class functionality. Host and target requirements are covered as
well.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

16 CHAPTER 1 Introduction

1.1 Overview

This guide describes how to install, configure and use emUSB with bulk communica-
tion, MSD, CDC or HID component. It also explains the internal structure of emUSB.

emUSB has been designed to work on any embedded system with USB client control-
ler. It can be used with USB 1.1. or USB 2.0 devices.

The highest possible transfer rate on USB 2.0 full speed (12 Mbit/second) devices is
approximately 1 Mbyte per second. This data rate can indeed be achieved on fast
systems, such as ARM7 and faster.

USB 2.0 high speed mode (480 MBit/second) is also fully supported and is automati-
cally handled. Using USB high speed mode with an ARM9 or faster could achieve val-
ues of approx. 18 MBytes/second and faster.

1.2 emUSB features

Key features of emUSB are:

High speed.

Can be used with or without an RTOS.

Easy to use.

Easy to port.

No custom USB host driver necessary.

Start / test application supplied.

Highly efficient, portable, and commented ANSI C source code.

Hardware abstraction layer allows rapid addition of support for new devices.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

1.3 emUSB components

emUSB consists of three layers: A driver for hardware access, the emUSB core and at
least a USB class driver or the bulk communication component.

Target USB components

USB class drivers

Bulk Printer MSD CDC HID

emUSB Core

Driver

17

The different available hardware drivers, the USB class drivers, and the bulk commu-
nication component are additional packages, which can be combined and ordered as

they fit to the requirements of your project. Normally, emUSB consists of a driver

that fits to the used hardware, the emUSB core and at least one of the USB class
drivers MSD, CDC, HID, printer or the unclassified bulk component.

Component Description
USB protocol layer

Bulk emUSB bulk component.
(emUSB-Bulk)

MSD emUSB Mass Storage Device class component.
(emUSB-MSD).

cDC emUSB Communication Device Class component.
(emUSB-CDCQC)

HID emUSB Human Interface Device Class component.
(emUSB-HID)

Printer emUSB Printer Class component. (emUSB-Printer)

Core layer
emUSB-Core \The emUSB core is the intrinsic USB stack.
Hardware layer
Driver \ USB controller driver.

Table 1.1: emUSB components

UMO09001 User & Reference Guide for emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

18 CHAPTER 1 Introduction

1.3.1 emUSB-Bulk

The emUSB-Bulk stack consists of an embedded side, which is shipped as source
code, and a driver for the PC, which is typically shipped as an executable (.sys).
(The source of the PC driver can also be ordered.)

1.3.1.1 Purpose of emUSB-Bulk

emUSB-Bulk allows you to quickly and smoothly develop software for an embedded
device that communicates with a PC via USB. The communication is like a single,
high speed, reliable channel (very similar to a TCP connection). It basically allows the
PC to send data to the embedded target, the embedded target to receive these bytes
and reply with any number of bytes. The PC is the USB host, the target is the USB cli-
ent. The USB standard defines 4 types of communication: Control, isochronous,
interrupt, and bulk. Experience shows, that for most embedded devices the bulk
mode is the communication mode of choice. It allows usage of the full bandwidth of
the USB bus.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

19

1.3.2 emUSB-MSD
1.3.2.1 Purpose of emUSB-MSD

Access the target device like an ordinary disk drive

emUSB-MSD enables the use of an embedded target device as a USB mass storage
device. The target device can be simply plugged-in and used like an ordinary disk
drive, without the need to develop a driver for the host operating system. This is pos-
sible because the mass storage class is one of the standard device classes, defined
by the USB Implementers Forum (USB IF). Virtually, every major operating system
on the market supports these device classes out of the box.

No custom host drivers necessary

Every major OS already provides host drivers for USB mass storage devices, there is
no need to implement your own. The target device will be recognized as a mass stor-
age device and can be accessed directly.

Plug and Play

Assuming the target system is a digital camera using emUSB-MSD, videos or photos
taken by this camera can be conveniently accessed with the file system explorer of
the used operating system, if the camera is connect to the host.

1.3.2.2 Typical applications

Typical applications are:

e Digital camera

e USB stick

e MP3 player

e DVD player

Any target with USB interface: easy access to configuration and data files.

1.3.2.3 emUSB-MSD features

Key features of emUSB-MSD are:

e Can be used with RAM, parallel flash, serial flash or mechanical drives

e Support for full speed (12 Mbit/second) and high speed (480 Mbit/second) trans-
fer rates

e (OS-abstraction: Can be used with any RTOS, but no OS is required for MSD-only
devices

1.3.2.4 How does it work?
Use file system support from host OS

A device which uses emUSB-MSD will be recognized as a mass storage device and
can be used like an ordinary disk drive. If the device is unformatted when plugged-in,
the host operating system will ask you to format the device. Any file system provided
by the host can be used. Typically FAT is used, but other file systems such as NTFS
are possible too. If one of those file systems is used, the host is able to read from
and write to the device using the storage functions of the emUSB MSD component,
which define unstructured read and write operations. Thus, there is no need to
develop extra file system code if the application only accesses data on the target
from the host side. This is typically the case for simple storage applications, such as
USB memory sticks or ATA to USB bridges.

Only provide file system code on the target if necessary

Mass storage devices like USB sticks does not require its own file system implemen-
tation. File system program code is only required if the application running on target
device has to access the stored data. The development of a file system is a complex

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

20 CHAPTER 1 Introduction

and time-consuming task and enhances the time-to market. Thus we recommend the
use of a commercial file system like emFile, SEGGER’s file system for embedded
applications. emFile is a high performance library that has been optimized for mini-
mum memory consumption in RAM and ROM, high speed and versatility. It is written
in ANSI C and can be used on any CPU and on any media. Refer to www.segger.com/
emfile.htm/ for more information about emfFile.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

www.segger.com/emfile.html
www.segger.com/emfile.html

21

1.3.3 emUSB-CDC

emUSB-CDC converts the target device into a serial communication device. A target
device running emUSB-CDC is recognized by the host as a serial interface
(USB2COM, virtual COM port), without the need to install a special host driver,
because the communication device class is one of the standard device classes and
every major operating system already provides host drivers for those device classes.
All PC software using a COM port will work without modifications with this virtual
COM port.

1.3.3.1 Typical applications

Typical applications are:

e Modem
e Telephone system
e Fax machine

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

22 CHAPTER 1 Introduction

1.3.4 emUSB-HID

The Human Interface Device class (HID) is an abstract USB class protocol defined by
the USB Implementers Forum. This protocol was defined for the handling of devices
which are used by humans to control the operation of computer systems.

An installation of a custom-host USB driver is not necessary, because the USB human
interface device class is standardized and every major OS already provides host driv-
ers for it.

1.3.4.1 Typical applications
Typical examples

Low-speed JTAG emulator
UPS (Uninterruptible power supply)

e Keyboard

e Mouse and similar pointing devices

e Game pad

e Front-panel controls - for example, switches and buttons.
e Bar-code reader

e Thermometer

e Voltmeter

[)

[)

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

23

1.3.5 emUSB-Printer

emUSB-Printer converts the target device into a printing device. A target device run-
ning emUSB-Printer is recognized by the host as a printer. Unless the device identi-
fies itself as a printer already recognized by the host PC, you have to install a driver
to be able to communicate with the USB device.

1.3.5.1 Typical applications

Typical applications are:

e Laser/Inkjet printer
¢ CNC machine

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

24 CHAPTER 1 Introduction

1.4 Requirements

1.4.1 Target system

Hardware

The target system must have a USB controller. The memory requirements are
approximately 6 Kbytes ROM for the emUSB-Bulk stack or 10 Kbytes ROM for
emUSB-Bulk and emUSB-MSD and approximately 1 Kbytes of RAM (only used for
buffering). Additionally memory for data storage is required, typically either on-
board flash memory (parallel or serial) or an external flash memory card is required.
In order to have the control when the device shall be enumerated by the host, a swit-
chable attach is necessary. This is a switchable pull-up connected to the D+-Line of
USB.

Software

A real-time kernel is required. It can be used with embOS or any compatible RTOS,
for information regarding the OS integration refer to Target OS Interface on
page 339.

1.4.2 Development environment (compiler)

The CPU used is of no importance; only an ANSI-compliant C compiler complying with
at least one of the following international standard is required:

e ISO/IEC/ANSI 9899:1990 (C90) with support for C++ style comments (//)

e ISO/IEC 9899:1999 (C99)
e ISO/IEC 14882:1998 (C++)

If your compiler has some limitations, let us know and we will inform you if these will
be a problem when compiling the software. Any compiler for 16/32/64-bit CPUs or
DSPs that we know of can be used; most 8-bit compilers can be used as well.

A C++ compiler is not required, but can be used. The application program can there-
fore also be programmed in C++ if desired.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

25

1.5 File structure

The following table shows the contents of the emUSB root directory:

Directory Contents
Contains the application program. Depending on which stack is
Application used, several files are available for each stack. Detailed infor-
mation can be found in the corresponding chapter.
Confi Contains configuration files (USB_Conf.h, Config_xxx.h, where
ontig xxx describes the driver that is used.).
Doc Contains the emUSB documentation.
Contains a simple implementation of the required hardware
Hardwar interface routines. Full implementation of the hardware routine
arcware for several CPU and eval board can be found on the SEGGER’s
website: http://www.segger.com
Inc Contains include files.
oS Contains operating systems dependent files which allows to run
emUSB with different RTOS's.
Contains the emUSB source code.
USB

Note: Do not change the source code in this directory.

Table 1.2: Supplied directory structure of emUSB core package

Depending on the chosen emUSB component, the following additional subdirectories

are available:

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

http://www.segger.com

26 CHAPTER 1 Introduction

1.5.1 Bulk communication component

Directory Contents

Contains the kernel mode USB driver for the PC (Win32, NT

Bulk\Windows- platform), the compiled driver (.sys). the .inf file required for
Driver installation. The source code of the Windows driver is included,

if a source code version of emUSB-Bulk has been ordered.
Bulk\Sam- Contains a PC sample project to help you bring up and test the
pleApp system.

Includes all files that are necessary for the generic bulk commu-

USB\Bulk . .
nication.

Table 1.3: Additional subdirectories for emUSB bulk communication component

1.5.2 MSD component

Directory Contents

Contains all files that handle the specific USB-MSD commands.
USB\MSD Different storage drivers, such as a RAM storage device driver or
emFile device driver are also available.

Table 1.4: Additional subdirectories for emUSB MSD component

1.5.3 CDC component

Directory Contents

The driver installation file (UsBser.inf) located in this directory
cDC can be used to install the USB-CDC device (Virtual COM-Port) on
> Windows 2000 platforms.

USB\CDC Contains all files specific for the USB-CDC communication.
Table 1.5: Additional subdirectories for emUSB CDC component

1.5.4 HID component

Directory Contents
HID\SampleApp Contains a PC sample project to help you bring up and test the
system.
USB\HID Includes all files that are necessary for the HID component.

Table 1.6: Additional subdirectories for emUSB HID communication component

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

UMO09001 User & Reference Guide for emUSB

27

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

28 CHAPTER 1 Introduction

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

29

Chapter 2

Background information

This is a short introduction to USB. The fundamentals of USB are explained and links
to additional resources are given.
Information provided in this chapter is NOT required to use the software.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

30 CHAPTER 2 Background information

2.1 USB
2.1.1 Short Overview

The Universal Serial Bus (USB) is an external bus architecture for connecting periph-
erals to a host computer. It is an industry standard — maintained by the USB Imple-
menters Forum — and because of its many advantages it enjoys a huge industry-wide
acceptance. Over the years, a number of USB-capable peripherals appeared on the
market, for example printers, keyboards, mice, digital cameras etc. Among the top
benefits of USB are:

e Excellent plug-and-play capabilities allow devices to be added to the host system
without reboots (“hot-plug”). Plugged-in devices are identified by the host and
the appropriate drivers are loaded instantly.

e USB allows easy extensions of host systems without requiring host-internal
extension cards.

e Device bandwidths may range from a few Kbytes/second to hundreds of Mbytes/
second.

A wide range of packet sizes and data transfer rates are supported.
USB provides internal error handling. Together with the already mentioned hot-
plug capability this greatly improves robustness.

e The provisions for powering connected devices dispense the need for extra power
supplies for many low power devices.

e Several transfer modes are supported which ensures the wide applicability of
USB.

These benefits did not only lead to broad market acceptance, but it also added sev-
eral advantages, such as low costs of USB cables and connectors or a wide range of
USB stack implementations. Last but not least, the major operating systems such as
Microsoft Windows XP, Mac OS X, or Linux provide excellent USB support.

2.1.2 Important USB Standard Versions
USB 1.1 (September 1998)

This standard version supports isochronous and asynchronous data transfers. It has
dual speed data transfer of 1.5 Mbytes/second for low speed and 12 Mbytes/second
for full speed devices. The maximum cable length between host and device is five
meters. Up to 500 mA of electric current may be distributed to low power devices.

USB 2.0 (April 2000)

As all previous USB standards, USB 2.0 is fully forward and backward compatible.
Existing cables and connectors may be reused. A new high speed transfer speed of
480 Mbytes/second (40 times faster than USB 1.1 at full speed) was added.

USB 3.0 (November 2008)

As all previous USB standards, USB 3.0 is fully forward and backward compatible.
Existing cables and connectors may be reused but not the new speed can only be
used with new USB 3.0 cables and devices. The new speed class is named USB
SuperSpeed, which is at a max. rate of 5 GBit/s.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

31

2.1.3 USB System Architecture

A USB system is composed of three parts - a host side, a device side and a physical
bus. The physical bus is represented by the USB cable and connects the host and the
device.

The USB system architecture is asymmetric. Every single host can be connected to
multiple devices in a tree-like fashion using special hub devices. You can connect up
to 127 devices to a single host, but the count must include the hub devices as well.

USB Host

A USB host consists of a USB host controller hardware and a layered software stack.
This host stack contains:

e A host controller driver (HCD) which provides the functionality of the host con-
troller hardware.

e The USB Driver (USBD) Layer which implements the high level functions used by
USB device drivers in terms of the functionality provided by the HCD.

e The USB Device drivers which establish connections to USB devices. The driver
classes are also located here and provide generic access to certain types of
devices such as printers or mass storage devices.

USB Device

Two types of devices exist: hubs and functions. Hubs provide for additional USB
attachment points. Functions provide capabilities to the host and are able to transmit
or receive data or control information over the USB bus. Every peripheral USB device
represents at least one function but may implement more than one function. A USB
printer for instance may provide file system like access in addition to printing.

In this guide we treat the term USB device as synonymous with functions and will not
consider hubs.

Each USB device contains configuration information which describe its capabilities
and resource requirements. Before it can be used, USB devices must be configured
by the host. When a new device is connected for the first time, the host enumerates
it, requests the configuration from the device, and performs the actual configuration.
For example, if an embedded device uses emUSB-MSD, the embedded device will
appear as a USB mass storage device, and the host OS provides the driver out of the
box. In general, there is no need to develop a custom driver to communicate with
target devices that use one of the USB class protocols.

Descriptors

A device reports its attributes via descriptors. Descriptors are data structures with a
standard defined format. A USB device has one device descriptor which contains
information applicable to the device and all of its configurations. It also contains the
number of configurations the device supports. For each configuration, a configuration
descriptor contains configuration-specific information. The configuration descriptor
also contains the number of interfaces provided by the configuration. An interface
groups the endpoints into logical units. Each interface descriptor contains information
about the number of endpoints. Each endpoint has its own endpoint descriptor which

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

32 CHAPTER 2 Background information

states the endpoint’s address, transfer types etc.

Device

descriptor

A%n configuration descriptors

Configuration

descriptor
/ 1...m interface descriptors
Interface
descriptor
/ 1...0 endpoint descriptors
Endpoint
descriptor

As can be seen, the descriptors form a tree. The root is the device descriptor with n
configuration descriptors as children, each of which has m interface descriptors which
in turn have o endpoint descriptors each.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

33

2.1.4 Transfer Types

The USB standard defines 4 transfer types: control, isochronous, interrupt, and bulk.
Control transfers are used in the setup phase. The application can basically select
one of the other 3 transfer types. For most embedded applications, bulk is the best
choice because it allows the highest possible data rates.

Control transfers

Typically used for configuring a device when attached to the host. It may also be
used for other device-specific purposes, including control of other pipes on the
device.

Isochronous transfers

Typically used for applications which need guaranteed speed. Isochronous transfer is
fast but with possible data loss. A typical use is for audio data which requires a con-
stant data rate.

Interrupt transfers
Typically used by devices that need guaranteed quick responses (bounded latency).
Bulk transfers

Typically used by devices that generate or consume data in relatively large and
bursty quantities. Bulk transfer has wide dynamic latitude in transmission con-
straints. It can use all remaining available bandwidth, but with no guarantees on
bandwidth or latency. Because the USB bus is normally not very busy, there is typi-
cally 90% or more of the bandwidth available for USB transfers.

2.1.5 Setup phase / Enumeration

The host first needs to get information from the target, before the target can start
communicating with the host. This information is gathered in the initial setup phase.
The information is contained in the descriptors, which are in the configurable section
of the USB-MSD stack. The most important part of target device identification are the
product and vendor IDs. During the setup phase, the host also assigns an address to
the client. This part of the setup is called enumeration.

2.1.6 Product/ Vendor IDs

The Product and Vendor IDs are necessary to identify the usb device. The Product ID
describes a specific device type and does not need to be unique between different
devices of the same type. USB host systems like Windows use the Product ID/Vendor
ID combination to identify which drivers are needed.

e.g:
All our J-Link v8 devices have the Vendor ID 0x1366 and Product ID 0x0101.

A Vendor and Product ID is necessary only when development of the product is fin-
ished; during the development phase, the supplied Vendor and Product IDs can be
used as samples.

Possible options to obtain a Vendor ID or Product ID are described in the chapter
Vendor and Product ID on page 385.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

34 CHAPTER 2 Background information

2.2 Predefined device classes

The USB Implementers Forum has defined device classes for different purposes. In
general, every device class defines a protocol for a particular type of application such
as a mass storage device (MSD), human interface device (HID), etc.

Device classes provide a standardized way of communication between host and
device and typically work with a class driver which comes with the host operating
system.

Using a predefined device class where applicable minimizes the amount of work to
make a device usable on different host systems.

emUSB-Device supports the following device classes:

Mass Storage Device Class (MSD)
Human Interface Device Class (HID)
Communication Device Class (CDC)
Printer Device Class (PDC)

2.3 USB analyzers

A variety of USB analyzers are on the market with different capabilities.

If you are developing an application using USB, it should not be necessary to have a
USB analyzer, but we still recommend you do.

Simple yet powerful USB-Analyzers are available for less than $1000.

2.4 References

For additional information see the following documents:

e Universal Serial Bus Specification, Revision 2.0

e Universal Serial Bus Mass Storage Class Specification Overview, Rev 1.2

e UFI command specification: USB Mass Storage Class, UFI Command Specifica-
tion, Rev 1.0

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

35

Chapter 3
Getting started

The first step in getting emUSB up and running is typically to compile it for the target
system and to run it in the target system. This chapter explains how to do this.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

36 CHAPTER 3 Getting started

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

3.1

How to setup your target system

To get the USB up and running, 3 possible ways currently available:
Upgrade a trial version available on the web with source code.

[)
e Upgrading an embOS Start project
e Creating a project from scratch.

3.1.1
code.

Simply download a trial package available from the SEGGER website.

37

Upgrade a trial version available on the web with source

After downloading, extract the trial project and open the workspace/project file which

is located in the start folder.

7% 1AR Embedded Workbench IDE
File Edit Wiew Project Tools Window Help

=1 E3

D@ S| 4 =R o~

A4y B 250 |BWHELS(L D

Total number of errors: 0
Total number of warnings: 0

* | ———— - x
Debug_FLASH BB 23 %0kttt j
Files [] ﬁ | 1ea=
B (@ start_LPC2478_EA_ARM_IAR... ¥ g ig‘; W D
Bell poicaion ||| [,

@ 5 Excluded ' e e e) . N .
) USB_HID_Mousa.e g 122 Modify to implement the desired protocol
(] Config ! 170 void MainTask (void);
rELres ! 171void MainTask(void) {
FELGu ! 172 USB Init():
- 1ne | 173 _RddEID():
Faos | 174 USB_Start():
(] Setup | 175 while (1) {
FECJuss L 178 ue ac[3]:
— E1use.h D177
— [use_at_tl_id_trial.a i178
|— [usB_at_tl_ir_trial.a io179 Wait for configuration
— Fuse_coc.h i 180 /7
I [use_coc_private.h ;181 while ((USB_GetState() & (USB_STAT CONFIGURED | USB_STAT SUSPENDED)) != USB_STAT CONFIGURED) {
L [use_rioh | 182 BSP_TogglelED(0) ;
— F1Use_HID_Private.h § A Ut lB R SRS
— Eluse_MsD.h o1ee U R
|— [USE_MSD_Private.h g BSE_C1rLED(D):
186 memset (ac, 0, sizeof(ac)):
|- [usB_0s_embos.c .1 - 0: 7/ To cthe lefr !
— Buse_private.n | 188 USB HID Write(sac[0], 3): Make sure we send the number of bytes defined in REPORT
A usen i 189 USB_0S_Delay(500) ;
1 O3 il ! 180ac[1] = (U8)-20:
— BlReadMe.txt io1o1 USB_HID_Write (sac[0] Make sure we send the number of bytes defined in REPORT
—&] output 1192 USB_05_Delay (100) ;
i193 3
194
195
P —— B LT T T —,
;197 =
Stail_LPC2478 EA ARM_IAR_VE 5ol [f _’l_l
* [| Messages A
USB_HID_Mouse.c
Linking AIJ
»

[Errors 0, Warnings 0 |tn 163, Col 22

FRT=

The source files in the

UMO09001 User & Reference Guide for emUSB

USB folder from the

emUSB shipment shall be copied into the

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

38

CHAPTER 3 Getting started

USB folder of the trial package.
Afterwards the project needs to be updated by adding the source files into the
project.

2 1AR Embedded Workbench IDE [_[o]x]
Fle Edt View Project Toos Window Help
DR & E@|a o] Ny vl abh BRES L5
USB_HID_Mouse.c T X
Debug_FLASH - UG e e e e ek 3 0 ZI
Files B 164 =
B ([Start_LPC2478_EA_ARM_IAR... ¥ 165 - HainTask
186
R
) USB_HID_Mouse.c i:: * Modify to implement the desired protocol
g Config 170 void MainTask (void)
G
mFs 171 void MainTask(void) {
& Gur 172 USE_Init();
8 (Jinc 173 _AddHID():
—#=(10s 174 USB_Start();
{8 1 setup 175 while (1) {]
—Euse 176 Us ac[3]:
— Buss.n 177
USE__memcpy.c . 178 /1
[usB_Bulk.c N 179 // Wait for configuration
USE_HID.C . 180 [/
— Buss_nio.h 181 while ((USB_GetState() & (USE_STAT CONFIGURED | USB_STAT SUSPENDED)) != USB_STAT CONFIGURED) {
|— B uss_tio_private.h 182 BSP_ToggleLED (0) ;
5 50y ;
USB_HW_NXP_LPC24xx.c i 183 USB_05_Delay(50);
Duss_1a0.c e i:; i51: C1rLED(0)
5 r 0) ;
£ usB_Main. . —
I—l _Main.c 186 memset (ac, 0, sizeof(ac)):
[} USB_0S_emb0S.c - o S srvay
f— Bl uss_Private.h 188 ID Write (sac[0], 3): f/ Make sure we send the number of bytes defined in REPORT
USB_Setup.c E 189 3 ;
& CJuseH 190 ac[1
8 util 191 f/ Make sure we send the number of bytes defined in REPORT
— B readMe.txt 132
@ (7 output 193 |
1943
135
L T ——— N = & P —————————————
197 =
Start_LPC2478_EA_ARM_IAA_YS 18] [4[| LlJ
| Messages Al
USB_HID_Mouse.c
Linking
Total number of errors: 0
Total number of warnings: 0 =
4] | »
Ready [Errors 0, Warrings 0 |tn 175, Col 14 =)

3.1.2 Upgrading an embOS Start project

Integrating emUSB

The emUSB default configuration is preconfigured with valid values, which matches
the requirements of the most applications. emUSB is designed to be used with
embOS, SEGGER’s real-time operating system. We recommend to start with an
embOS sample project and include emUSB into this project.

We assume that you are familiar with the tools you have selected for your project
(compiler, project manager, linker, etc.). You should therefore be able to add files,
add directories to the include search path, and so on. In this document the IAR

Embedded Workbench® IDE is used for all examples and screenshots, but every
other ANSI C toolchain can also be used. It is also possible to use make files; in this
case, when we say “add to the project”, this translates into “add to the make file”.

Procedure to follow

Integration of emUSB is a relatively simple process, which consists of the following
steps:

Step 1: Open an embOS project and compile it.
e Step 2: Add emUSB to the start project
e Step 3: Compile the project

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

39

Step 1: Open an embOS start project

We recommend that you use one of the supplied embQOS start projects for your target
system. Compile the project and run it on your target hardware.

/% 1AR Embedded Workbench IDE =] 3
File Edit “iew Project Toolz ‘Window Help
D@ &S =@ o | BRI A R)
e x E | - x
[Debug_FLASH =l 33
: _ . 34 k=
Files (=B | | 35#include "RTOS.h"
o [Elstart_AT915AM7X256 ... v I Cjft inc lude VBSP.h
|21 (0 application . | 3B0S_STACKPTR int StackHP[1281, StackLP[1281; s% Tas
= CaLib : 32 0S_TASK TCBHP. TCBLF; #%* Task-contro
DSetup * E 3?
I— Bl readMe txt i 42 static void HPTask{void> {
i 43 while (1> ¢
@ (3 output L a4 BSP_ToggleLEDC@);
i 45 05_Delay (58);
46 >
47>
48
49 static void LPTask{void)> {
5@ while (1> {
51 BSP_ToggleLED(1);
52 05_Delay (208);
53 >
543>
55
56
57
L8 = main
59 x
60
61 -

62 int main{void> {

H 63 08_IncDICH; #%* Initially disable int
1 64 0S8_InitKern{); #% initialize 08
1 65 0S_InitHUW(>; #% initialize Hardware f
. 66 BSP_Init(o; /% initiali LED ts [
Start_AT315AM74256 16l (<] =n2 AR AR e S_,l—l
Ready (I

Step 2: Adding emUSB to the start project

Add all source files in the following directory to your project:

. Config
. USB
. UTIL (optional)

The config folder includes all configuration files of emUSB. The configuration files
are preconfigured with valid values, which match the requirements of most applica-
tions. Add the hardware configuration USB_Config_<TargetName>.c supplied with
the driver shipment.

If your hardware is currently not supported, use the example configuration file and
the driver template to write your own driver. The example configuration file and the
driver template is located in the sample\Driver\Template folder.

The util folder is an optional component of the emUSB shipment. It contains opti-
mized MCU and/or compiler specific files, for example a special memcopy function.

Configuring the include path

The include path is the path in which the compiler looks for include files. In cases
where the included files (typically header files, .h) do not reside in the same direc-
tory as the C file to compile, an include path needs to be set. In order to build the
project with all added files, you will need to add the following directories to your
include path:

. Config
. Inc
. USB

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

40 CHAPTER 3 Getting started

3.1.3 Creating a project from scratch

To get the target system to behave like a mass storage device or generic bulk device
on the USB bus, a few steps have to be taken:

A project or make file has to be created for the used toolchain.

The configuration may need to be adjusted.

The hardware routines for the USB controller have to be implemented.
Add the path of the required USB header files to the include path.

To get the target up and running is a lot easier if a USB chip is used for which a tar-
get hardware driver is already available. In that case, this driver can be used.

Creating the project or make file

The screenshot below gives an idea about a possible project setup.

= Stﬂrt_ATQ'l SAM75256 - MSD_Debug_Flash*
&1 Ca Application
B MSD_Start.c
&1 3 Config
L— B USB_Conth
&1 CaHardware
Lo samM?s
F— B ATIISAMIS h
[B b
F=@Inc
— B Globalh
L— B Hwh
- m0s
L5 @embos
= COARM_IAR
[:ICPU_ATQ'ISAM?SZEB
HE@lnc
FHE@LUE
[tain.c
B 05 _Errorc
B RTOSVECT asm
B USB_0S_emhOS.c
FHRCIUsE
23 Care
— BIUSBEh
B USB__memcpy.c
B USB_Bulk.c
B USE_tain.c
— [USE_Private.h
B USB_Setup.c
-2 Ca Driver
B USE_Hw_SAM7S.c
= LI M50
B USB_MSD.c
— B USB_MSDh
— [E USE_MSD_Private.h
B USB_MSD_STORAGE_RAM.c
1 3 Output

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

3.2 Select the start application

For quick and easy testing of your emUSB integration, start with the code found in
the folder application. Add USB_HID_ Mouse.c as your applications to your project.
=1 E3

2 1AR Embedded Workbench IDE
Fie Edt View Project Tods Window Hep

DEEA@ & s er|e

x
R -
Debug_FLASH -

Files:

R

O (J Start_LPC2478_EA_ARM_IAR... v
&1 (1 Application
B EaExcluded
USB_HID_Mouse.c
[(1 Config
—EFs
& Gut
FEine
—#=(10s
& [setup.

— Buss.n
USE__memcpy.c
USB_Bulk.c
USB_HID.C
|— Blusa_nio.h
|— B uss_tio_private.h
USB_HW_NXP_LPC24xx.c
USB_IAD.c
USB_Main.c
USB_0S_emb0S.c
— B uss_private.n
USB_Setup.c

& CJuseH

& L util

— B readMe.txt

@ (7 output

Start_LPC2476_EA_ARM_IARYS

Ny vl abh BRES L5

USB_HID_Mouse.c

G % R R R R R R R R R R R R R R R R R KR
164
1865 MainTask
166
167 * USB handling task.
168 Modify to implement the desired protocol
169
170 void MainTask(void):
171 void MainTask(void) {
172 USB_Init();
173 _AdAHID();
174 USB_Start():
175 while (1) {f
176 U8 ac[3]:
177
178 /1
179 // Wait for configuration
180 [/
181 while ((USB GetState() & (USB_STAT CONFIGURED | USB STAT SUSPENDED)) !'= USB STAT CCNFIGURED) {
182 BSP_ToggleLED (0) ;
183 USB_05_Delay (50) :
184 }
185 BSP_C1rLED(O) ;
186 memset (ac, 0, sizeof(ac)):
187 ac[1] = 20; // To the left !
188 USB_HID Write(&ac[0], 3);: // Make sure we send the number of bytes defined in REPORT
189 USE_05S_Delay(500):
190 ac[1] = (U8)-20; //
191 USB_HID Write(£ac[0], 3); // Make sure we send the number of bytes defined in REFORT
192 USE_0S_Delay(100):
193 |}
194}
135
LG o sk kR R R R R R nd OF File ®#%ewswswswsn s e e ou s o we v w s
197
{7 EN] |

HEN

| Messages

USB_HID_Mouse.c
Linking

Total number of errars: 0
Total number of warnings: 0

4]

Ready

[Errors 0, Warrings 0 |tn 175, Col 14

aom |

i

3.3 Build the project and test it

Build the project. It should compile without errors and warnings. If you encounter
any problem during the build process, check your include path and your project con-
figuration settings. To test the project, download the output into your target and

start the application.

41

After connecting the USB cable to the target device, the mouse pointer should hop

from left to right.

UMO09001 User & Reference Guide for emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

42

3.4 Configuration

CHAPTER 3 Getting started

An application using emUSB must contain the following functions:

Function

Description

General emUSB configuration functions

USB_GetVendorId()

Should return the vendor Id of the target.

USB_GetProductId()

Should return the product Id of the target.

USB_GetVendorName ()

Should return the manufacturer name.

USB_GetProductName ()

Should return the product Id of the target.

USB_GetSerialNumber ()

Should return the manufacturer name.

Additional required configuration functions for emUSB-MSD

USB_MSD_GetVendorName ()

Should return the vendor name.

USB_MSD_GetProductVer ()

Should return the product version.

USB_MSD_GetSerialNo ()

Should return the serial number.

Table 3.1: Functions that are required in emUSB applications

These functions are included in the every example application. The functions could be

used without modifications

in the development phase of your application, but you

may not bring a product on the market without modifying the information like vendor

Id and product Id.

Ids Description
Default vendor Id for all applications
0x8765 Example vendor Id for all examples.
Used product Ids
0x1234 Example product Id for all bulk samples.
0x1000 Example product Id for all MSD samples.
0x1200 Elxeample product Id for the MSD CD-ROM sam-
Ox1111 Example product Id for all CDC samples.
0x1112 Example product Id for HID mouse sample.
Ox1114 Example product Id for the vendor specific HID
sample.
0x2114 Elxeample product Id for the Printer class sam-

Table 3.2: List of used product and vendor Ids

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

43

3.4.1 General emUSB configuration functions

3.4.1.1 USB_GetVendorid()

Description
Should return the vendor Id of the target.

Prototype
Ul6 USB_GetVendorId(void) ;

Example

Ul6 USB_GetVendorId(void) {
return 0x8765;
}

Additional information

The vendor Id is assigned by the USB Implementers forum (www.usb.org). For tests,
the default number above (or pretty much any other number) can be used. However,
you may not bring a product on the market without having been assigned your own
vendor Id.

For emUSB-Bulk and emUSB-CDC: If you change this value, do not forget to make
the same change to the .inf file as described in section The .inf file on page 78 or
The .inf file on page 261. Otherwise, the Windows host will be unable to locate the
driver.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

44 CHAPTER 3 Getting started

3.4.1.2 USB_GetProductid()

Description

Should return the product Id of the target.
Prototype

Ul6 USB_GetProductId(void),

Example

Ul6 USB_GetProductId(void) {
return 0x1111;
}

Additional information

The product Id in combination with the vendor Id creates a worldwide unique identi-
fier. For tests, you can use the default number above (or pretty much any other num-
ber).

For emUSB-Bulk and emUSB-CDC: If you change this value, do not forget to make
the same change to the .inf file as described in section The .inf file on page 78 or
The .inf file on page 261. Otherwise, the Windows host will be unable to locate the
driver.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

3.4.1.3 USB_GetVendorName()
Description
Should return the manufacturer name.
Prototype

const char * USB_GetVendorName (void) ;

Example

const char * USB_GetVendorName (void) {
return "Vendor";

)
Additional information

45

The manufacturer name is used during the enumeration phase. The product name
and the serial number should together give a detailed information about which device

is connected to the host.

UMO09001 User & Reference Guide for emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

UMO09001 User & Reference Guide for emUSB

CHAPTER 3

3.4.1.4 USB_GetProductName()

Description
Should return the product name.

Prototype

const char * USB_GetProductName (void) ;

Example

const char * USB_GetProductName (void) {
return "Bulk device";

)
Additional information

Getting started

The product name is used during the enumeration phase. The manufacturer name
and the serial number should together give a detailed information about which device

is connected to the host.

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

47

3.4.1.5 USB_GetSerialNumber()

Description
Should return the serial number.

Prototype

const char * USB_GetSerialNumber (void) ;

Example

const char * USB_GetSerialNumber (void) {
return "12345678";
}

Additional information

The serial number is used during the enumeration phase. The manufacturer and the
product name should together give a detailed information to the user about which
device is connected to the host.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

48 CHAPTER 3 Getting started

3.4.2 Additional required configuration functions for emUSB-
MSD

Refer to Configuration on page 181 for more information about the required addi-
tional configuration functions for emUSB-MSD.

3.4.3 Descriptors

All configuration descriptors are automatically generated by emUSB and do not
require configuration.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

Chapter 4
USB Core

49

This chapter describes the basic functions of the USB Core.

UMO09001 User & Reference Guide for emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

50 CHAPTER 4 USB Core

4.1 Overview

This chapter describes the functions of the core layer of USB Core. This functions are
required for all USB class drivers and the unclassified bulk communication compo-
nent.

Target USB components

USB class drivers

Bulk Printer MSD CDC HID

emUSB Core

Driver

General information

To communicate with the host, the example application project includes a USB-spe-
cific header use.h and one of the USB libraries (or instead of the libraries the source
files, if you have a source version of USB Core). These libraries contain API functions
to communicate with the USB host through the USB Core driver.

Every application using USB Core has to perform the following steps:

1. Initialize the USB stack. To initialize the USB stack usB_Init () has to be called.
USB_Init () performs the Ilow-level initialization of the USB stack and calls
USB_X_AddDriver () to add a driver to the USB stack.

2. Add communication endpoints. You have to add the required endpoints with the
compatible transfer type for the desired interface before you can use any of the
USB class drivers or the unclassified bulk communication component.

For the emUSB bulk component, refer to USB_BULK_INIT_DATA on page 106 for
information about the initialization structure that is required when you want to
add a bulk interface.

For the emUSB MSD component, refer to USB_MSD_INIT_DATA on page 199 and
USB_MSD_INST_DATA on page 201 for information about the initialization struc-
tures that are required when you want to add an MSD interface.

For the emUSB CDC component, refer to USB_CDC _INIT_DATA on page 284 for
information about the initialization structure that is required when you want to
add a CDC interface.

For the emUSB HID component, refer to USB_HID INIT_DATA on page 302 for
information about the initialization structure that is required when you want to
add a HID interface.

3. Start the USB stack. Call usB_start () to start the USB stack.

Example applications for every supported USB class and the unclassified bulk compo-
nent are supplied. We recommend to use one of these examples as starting point for
your own application. All examples are supplied in the \application\ directory.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

51

4.2 Target API

This section describes the functions that can be used by the target application.

Function Description

USB basic functions
Adds a USB device driver to the USB

USB_AddDriver ()

stack.
USB_GetState () Returns the state of the USB device.
USB_Init () Initializes USB Core.
USB_IsConfigured() Checks if the USB device is configured.
USB_Start () Starts the emUSB core.

USB configuration functions
Returns an endpoint “handle” that can be

USB_AAAEP () used for the desired USB interface.
Sets a callback for setting additional
USB_SetAddFuncDesc () information into the configuration
descriptor.
Sets a callback to handle class setup
USB_SetClassRequestHook ()
requests.
USB_SetVendorRequestHook () Sets a callback to handle vendor setup
requests.
USB. SetIsSelfPowered () Sets whether the device is self-powered
or not.
Sets the target device current consump-
USB_SetMaxPower () tion
Sets a callback to handle data read of
USB_SetOnRxEPO () .
endpoint 0.
USB_SetOnSetupHook () g;asts a callback to handle EPO setup pack-
USB__WriteEPOFromISR() Writes data to a USB EP.
USB_StallEP() Stalls an endpoint.
USB_WaitForEndOfTransfer () Waits for a data transfer to be ended.

USB IAD functions

Allows to combine multi-interface device
classes with single-interface classes.

USB RemoteWakeUp functions

Allows the device to publish that remote
wake is available.

USB_DoRemoteWakeup () Performs a remote wakeup to the host.
Table 4.1: Target USB Core interface function list

USB_EnableIAD()

USB_SetAllowRemoteWakeUp ()

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

52 CHAPTER 4 USB Core

4.2.1 USB basic functions

4.2.1.1 USB_AddDriver()

Description

Adds a USB device driver to the USB stack. This function should be called from within
USB_X_AddDriver () which is implemented in uss_x.c.

Prototype

void USB_AddDriver (const USB_HW_DRIVER * pDriver) ;

Additional information

To add the driver, use UsB_addDriver () with the identifier of the compatible driver.
Refer to the section Available USB drivers on page 356 for a list of supported devices
and their valid identifiers.

Example

USB_AddDriver (&USB_Driver_AtmelRM9200) ;

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

4.2.1.2 USB_GetState()
Description
Returns the state of the USB device.
Prototype

int USB_GetState(void) ;

Return value

53

The return value is a bitwise OR combination of the following state flags.

USB state flags

USB_STAT_ATTACHED

Device is attached.

USB_STAT_ READY

Device is ready.

USB_STAT_ADDRESSED

Device is addressed.

USB_STAT_CONFIGURED

Device is configured.

USB_STAT_SUSPENDED

Device is suspended.

Additional information

A USB device has several possible states. Some of these states are visible to the USB
and the host, while others are internal to the USB device. Refer to Universal Serial
Bus Specification, Revision 2.0, Chapter 9 for detailed information.

UMO09001 User & Reference Guide for emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

54 CHAPTER 4 USB Core

4.2.1.3 USB_Init()

Description
Initializes the USB device with its settings.

Prototype
void USB_Init (void) ;

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

55

4.2.1.4 USB_IsConfigured()
Description
Checks if the USB device is initialized and ready.
Prototype
char USB_TIsConfigured(void) ;
Return value

0: USB device is not configured.
1: USB device is configured.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

56 CHAPTER 4 USB Core

4.2.1.5 USB_Start()

Description
Starts USB Core.

Prototype
void USB_Start (void) ;

Additional information

This function should be called after configuring USB Core. It initiates a hardware
attach and updates the endpoint configuration. When the USB cable is connected to
the device, the host will start enumeration of the device.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

57

4.2.2 USB configuration functions

4.2.2.1 USB_AddEP()

Description
Returns an endpoint “handle” that can be used for the desired USB interface.
Prototype
unsigned USB_AdJdJEP (U8 InDir,
us TransferType,
Ule Interval,
us * pBuffer,
unsigned BufferSize);
Parameter Description
InDir Specifies the direction of the desired endpoint.
Specifies the transfer type of the endpoint.
The following values are allowed:
TransferType |USB_TRANSFER_TYPE_BULK
USB_TRANSFER_TYPE_ISO
USB_TRANSFER_TYPE_INT
Specifies the interval in microframes [0.125 ps] for the endpoint.
Interval . .
This value can be zero for a bulk endpoint.
S e Pointer to a buffer that is used for OUT-transactions. For IN-end-
. points this parameter can be NULL.
BufferSize Size of the buffer.

Table 4.2: USB_AddEP() parameter list

Return value

On success: A valid endpoint handle is returned.
On failure: 0 is returned.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

58 CHAPTER 4 USB Core

4.2.2.2 USB_SetAddFuncDesc()

Description
Sets a callback for setting additional information into the configuration descriptor.

Prototype
void USB_SetAddFuncDesc (USB_ADD_FUNC_DESC * pfAddDescFunc) ;

Parameter Description

Pointer to a function that should be called when building the
configuration descriptor.
Table 4.3: USB_SetAddFuncDesc() parameter list

pfAddDescFunc

Additional information

USB_ADD_FUNC_DESC is defined as follows:
typedef void USB_ADD_FUNC_DESC (USB_INFO_BUFFER * pInfoBuffer);

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

59

4.2.2.3 USB_SetClassRequestHook()
Description
Sets a callback for a function that handles setup class request packets.

Prototype

void USB_SetClassRequestHook (unsigned Interface,
USB_ON_CLASS_REQUEST * pfOnClassrequest) ;

Parameter Description

Specifies the Interface number of the class on which the hook
shall be installed.

Pointer to a function that should be called when a setup class

request/packet is received.
Table 4.4: USB_SetClassRequestHook() parameter list

Interface

pfOnClassrequest

Additional information

Note that the callback will be called within an ISR.

If it is necessary to send data from the callback function through endpoint 0, use the
function USB__ WriteEPOFromISR().

USB_ON_CLASS_REQUEST is defined as follows:

typedef void USB_ON_CLASS_REQUEST (const USB_SETUP_PACKET * pSetup-
Packet) ;

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

60 CHAPTER 4 USB Core

4.2.2.4 USB_SetVendorRequestHook()

Description
Sets a callback for a function that handles setup vendor request packets.

Prototype

void USB_SetClassRequestHook (unsigned Interface,
USB_ON_CLASS_REQUEST * pfOnClassrequest) ;

Parameter Description

Specifies the Interface number of the class on which the hook
shall be installed.

Pointer to a function that should be called when a setup ven-
dor request/packet is received.

Table 4.5: USB_SetClassRequestHook() parameter list

Interface

pfOnClassrequest

Additional information

Note that the callback will be called within an ISR.

If it is necessary to send data from the callback function through endpoint 0, use the
function USB__WriteEPOFromISR().

USB_ON_CLASS_REQUEST is defined as follows:

typedef void USB_ON_CLASS_REQUEST (const USB_SETUP_PACKET * pSetup-
Packet) ;

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

61

4.2.2.5 USB_SetisSelfPowered()
Description
Sets whether the device is self-powered or not.

Prototype
void USB_SetIsSelfPowered (U8 IsSelfPowered) ;

Parameter Description

0 - Device is not self-powered.
1 - Device is self-powered..
Table 4.6: USB_SetClassRequestHook() parameter list

IsSelfPowered

Additional information

This function shall be called before USB_Start(), as it will specify if the device is self-
powered or not.
The default value is 0 (not self-powered).

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

62 CHAPTER 4 USB Core

4.2.2.6 USB_SetMaxPower()

Description
Sets the max power consumption that shall the target report during enumeration.

Prototype

void USB_SetMaxPower (U8 MaxPower) ;

Parameter Description

Specifies the max power consumption given in mA.
MaxPower shall be in range between OmA - 500mA.
Table 4.7: USB_SetClassRequestHook() parameter list

MaxPower

Additional information

This function shall be called before USB_Start(), as it will specify how much power
the device will consume from the host.
The default value is 100mA.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

63

4.2.2.7 USB_SetOnRxEP0()
Description

Sets a callback to handle data read of endpoint 0.

Prototype
void USB_SetOnRxEPO (USB_ON_RX_FUNC * pfOnRx) ;

Parameter Description

Pointer to a function that should be called when receiving data
other than setup packets.
Table 4.8: USB_SetOnRxEPO() parameter list

pfOnRx

Additional information

Note that the callback will be called within an ISR.

If it is necessary to send data from the callback function through endpoint 0, use the
function USB__wWriteEPOFromISR().

USB_ON_RX_FUNC is defined as follows:

typedef void USB_ON_RX_FUNC (const U8 * pData, unsigned NumBytes) ;

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

64 CHAPTER 4 USB Core

4.2.2.8 USB_SetOnSetupHook()
Description
Sets a callback for a function that handles setup class request packets.
Prototype

void USB_SetClassRequestHook (unsigned Interface,
USB_ON_CLASS_REQUEST * pfOnClassrequest) ;

Parameter Description

Specifies the Interface number of the class on which the hook
shall be installed.

Pointer to a function that should be called when a setup class
request/packet is received.
Table 4.9: USB_SetClassRequestHook() parameter list

Interface

pfOnClassrequest

Additional information

Note that the callback will be called within an ISR.

If it is necessary to send data from the callback function through endpoint 0, use the
function USB__WriteEPOFromISR().

USB_ON_CLASS_REQUEST is defined as follows:

typedef int USB_ON_SETUP (const USB_SETUP_PACKET * pSetupPacket) ;

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

65

4.2.2.9 USB__ WriteEPOFromISR()

Description

Writes data to a USB EP.

Prototype

void USB_ _WriteEPOFromISR(const void* pData, unsigned NumBytes,

char SendOPacketIfRequired) ;

Parameter Description
pData Data that should be written.
NumBytes Number of bytes to write.
Send0PacketIfRequ Specifies that a zero-length packet sr_\ould be sent when_ the
ired last data packet to thg host is a multiple of MaxPac_ketS|ze.
Normally MaxPacketSize for control mode transfer is 64 byte.

Table 4.10: USB_WriteEPOFromISR() parameter list

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

66 CHAPTER 4 USB Core

4.2.3 USB control functions

4.2.3.1 USB_StallEP()

Description
Stalls an endpoint.
Prototype
void USB_StallEP (U8 EPIndex) ;
Parameter Description
EPIndex Endpoint handle that needs to be stalled.

Table 4.11: USB_StallEP() parameter list

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

67

4.2.3.2 USB_WaitForEndOfTransfer()
Description
Waits for a data transfer to be ended.

Prototype
void USB_WaitForEndOfTransfer (U8 EPIndex) ;

Parameter Description

EPIndex Endpoint handle to wait for end of transfer.
Table 4.12: USB_WaitForEndOfTransfer() parameter list

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

68 CHAPTER 4 USB Core

4.2.4 USB IAD functions
4.2.4.1 USB_EnablelAD()

Description

Allows to combine multi-interface device classes with single-interface classes or
other multi-interface classes.

Prototype
void USB_EnableIAD(void) ;

Additional information

Simple device classes such as HID and MSD or BULK use only one interface descrip-
tor to describe the class. The interface descriptor also contains the device class code.
The CDC device classes uses more than one interface descriptor to describe the
class. The device class code will then be written into the device descriptor. It may be
possible to add an interface which does not belong to the CDC class, but it may be
correctly recognized by the host.

In order to allow this, a new descriptor type was introduced:

IAD (Interface Association Descriptor), this descriptor will encapsulate the multi-
interface class into this IA descriptor, so that it will be seen as one single interface
and will then allow to add other device classes.

If you intend to use the CDC component with any other component, please call
USB_EnableIAD() before adding the CDC component through use_cbDc_add().

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

69

4.2.5 USB Remote wakeup functions

Remote wakeup is a feature that allows a device to wake up a host system from a
suspend state.

In order to do this a special resume signal is sent over the USB data lines. This signal
shall be held for at least 1ms but not more than 15 ms. typically this signaling is held
for 10ms.

Additionally the USB host controller and operating system shall be able to handle this
signaling.

Windows OS:

Currently Windows OS only supports the wakeup feature on device are based on HID
mouse/keyboard, CDC Modem and RNDIS Ethernet class. MSD, generic bulk and CDC
serial is not supported by Windows. So therefore a HID mouse class even as dummy
interface within you USB configuration is currently mandatory. A sample is provided
for adding such a dummy class.

Windows must also be told that the device shall wake the PC from the suspend state.
This is done by setting the option "Allow this device to bring the computer out of
standby.". This is done by opening the device manager, then the device properties of
the device (in most cases this device is called HID-compliant mouse) shall be opened
and within the "Power Management" the said option shall be checked.

MFIE

Bile Action Yiew Generall Driver I Details Fower Management |

- = | @ |F.

i HID-compliant molsze
[=g Disk drives a]
= -é Display adz
g DIrD'fCD'RC ™ &llov the camputer bo b off this device bo save power.
Sﬁ E'I_Ills_:jnplri:: [V iisllos this device o bring the computer out of standby.

g Americe
{8 USE Hu
-2 IDE ATAMA
[+-%gp IEEE 1394 |
- E8 Junga
#-iz Keyboards
EI) Mice and of
i -1 HID-con
1) Microsc
Monitors
B& Metwork ac
®- S Ports (Com
ﬂ Processors
#-4E 5CsIand R
-, Sound, vide
q-n Starage wo

| - bl Swstem des K I Cancel | | LI

MAC OS X

MAC OS X supports remote wakeup for all device classes.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

70 CHAPTER 4 USB Core

4.2.5.1 USB_SetAllowRemoteWakeUp()
Description
Allows the device to publish that remote wake is available.

Prototype
void USB_SetAllowRemoteWakeUp (U8 AllowRemoteWakeup) ;

Parameter Description

1 - Allows and publish the remote wakeup is available.
0 - Publish that remote wakeup is not available.
Table 4.13: USB_SetAllowRemoteWakeUp() parameter list

AllowRemoteWakeup

Additional information

This function shall be called before the function USB_Start() is called. This make sure
that the Host is informed that USB remote wake up is available.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

71

4.2.5.2 USB_DoRemoteWakeup()

Description

Performs a remote wakeup in order to wake up the host from the standby/suspend
state.

Prototype
void USB_DoRemoteWakeUp (void) ;

Additional information

Please make sure that this function is called within a task context, since the lower
function may call function that may not allowed within an ISR context.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

72 CHAPTER 4 USB Core

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

73

Chapter 5

Bulk communication

This chapter describes how to get the emUSB-Bulk up and running.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

74 CHAPTER 5 Bulk communication

5.1 Generic bulk stack

The generic bulk stack is located in the directory usg. All C files in the directory
should be included in the project (compiled and linked as part of your project). The
files in this directory are maintained by SEGGER and should not require any modifica-
tion. All files requiring modifications have been placed in other directories.

5.2 The Kernel mode driver (PC)

In order to communicate with a target (client) running emUSB, an emUSB bulk kernel
mode driver has to be installed on Windows PC’s. Typically, this is done as soon as
emUSB runs on target hardware.

Installation of the driver as well as how to recompile it is explained in this chapter.

5.2.1 Why is a driver necessary?

In Microsoft’'s Windows operating systems, all communication with real hardware is
implemented with kernel-mode drivers. Normal applications run in user-mode. In
user-mode, hardware access is not permitted. All access to hardware is done through
the operating system. The operating system uses a kernel mode driver to access the
actual hardware. In other words: every piece of hardware requires one or more ker-
nel mode drivers to function. Windows supplies drivers for most common types of
hardware, but it does not come with a generic bulk communication driver. It comes
with drivers for certain classes of devices, such as keyboard, mouse and mass stor-
age device (for example, a USB stick). This makes it possible to connect a USB
mouse and not having to install a driver for it: Windows already has a driver for it.

Unfortunately, there is no generic kernel mode driver which allows communication to
any type of device in bulk mode. This is why a kernel mode driver needs to be sup-
plied in order to work with emUSB-Bulk.

5.2.2 Supported platforms

The kernel mode driver works on all NT-type platforms. This includes Windows 2000
and Windows XP (home and professional), Windows 2003 Server and Windows Vista.
Windows NT itself does not support USB; Win98 is not supported by the driver.

5.3 Installing the driver

When the target device is plugged on the computer's USB port, or when the com-
puter is first powered up after connecting the emUSB device, Windows will detect the
new hardware.

Found New Hardware Wizard

Welcome to the Found New

\? Hardware Wizard

Thiz wizard helpz you install a device driver for a
hardware device.

To continue, click Next.

Cancel

< Back

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

75

The wizard will complete the installation for the detected device. First select the
Search for a suitable driver for my device option and click on the Next button.

Found New Hardware Wizard

Install Hardware Device Drivers o
A device driver iz a software program that enables a hardware device to work, with
an operating system.

Thiz wizard will complete the installation for this device:

@ Bulk device

A device driver iz a software program that makes a hardware device work. “Windows
needs driver files for your new device. To locate driver files and complete the
inztallation click Mext.

‘what do you want the wizard to do?

& Eearch for a sutable driver for my device [recommendedE

" Display a list of the known drivers for this device so that | can choose a specific
driver

< Back I Mest » I Cancel |

In the next step, select the Specify a location option and click afterwards on the

Next button.

Found New Hardware Wizard

Locate Driver Files N
Wwhere do you want Windows to search for driver files?

Search for driver files for the following hardware device:

@ Bulk device

The wizard zearches for suitable drivers in itz driver databasze on your computer and in
any of the following optional search locations that you specify.

To start the gearch, click Mest. If you are searching on a floppy disk or CD-ROM drive,
inzert the floppy disk or CD before clicking Mext.

Optional search locations:
[Floppy disk drives
" CD-ROM dives

™ Microsoft Windows Update

< Back I Mest » I Cancel |

The wizard needs the path to the correct driver files for the new device.

Found Hew Hardware Wizard [%]

Inzert the manufacturer's installation disk into the drive oK |
selected, and then click OK.

LCopy manufacturer's files from:

|CAUSBBUKDriver

Use the directory navigator to select the usBBulk.inf file and click the Open button.

Found Hew Hardware Wizard [%]

= Inzert the manufacturer's installation disk into the drive

selected, and then click OK.
Cancel |

LCopy manufacturer's files from:

C:\Program Filesh\AR Systemsh\Embedded Workbej Browse. .. |

UMO09001 User & Reference Guide for emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

76 CHAPTER 5 Bulk communication

The wizard confirms the choice and starts to copy, after clicking the Next button.

Found New Hardware Wizard

Driver Files Search Results o
The wizard has finished searching for driver files for your hardware device.

The wizard found a driver for the following device:

@ 1USE Device

“windows found a driver for this device. Ta install the driver Windows found, click Mest.

= c:hwuzbbulkdriveriusbbulk. inf

Cancel |

At this point, the installation is complete. Click the Finish button to dismiss the wiz-
ard.

Found New Hardware Wizard

Completing the Found New
Hardware Wizard

_\> USE Bulk driver

Windows has finizhed installing the software for thiz device.

To close this wizard, click Finizh.

< Back [Carce|

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

77

5.3.1 Recompiling the driver

To recompile the driver, the Device Developer Kit (NTDDK), as well as an installation
of Microsoft Visual C++ 6.0 or Visual Studio .net is needed.

The workspace is placed in the subdirectory priver. In order to open it, double click
the workspace file UsBDriver.dsw.

A workspace similar to the screenshot below is opened.

t. USBDriver - Microsoft Yizual C++

|| Eile Edt View Inset Project Build Tools Window Help
eS|
“wiortkspace USEDriver: 1 project(s)
El Dniver files
Ela S
3 dev.c
-] Diiverrc
% b airh
El misc. c
3 prp.c
El P C
El M.
-[#] usbc

=143 Canfig

1] | H
B gz IE] Hesu:uu...l Fileiem I_

L lx

RN

[T * s Build { Debug & Findin Files1 % Find in Files2 3| 4] |
Feady [Ln1,Coll |REC [COL [O%F [READ 4%

Choose Build | Build USBBulk.sys (Shortcut: F7) to compile and link the driver.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

78 CHAPTER 5 Bulk communication

5.3.2 The .inf file

The .inf file is required for installation of the kernel mode driver.
It looks as follows:

; USB BULK Device driver inf

[Version]

Signature="$CHICAGOS"

Class=USB
ClassGUID={36FCO9E60-C465-11CF-8056-444553540000}
provider=%$MfgName%

DriverVer=08/07/2003

[SourceDisksNames]
1="USB BULK Installation Disk",,,

[SourceDisksFiles]
USBBulk.sys = 1
USBBulk.inf = 1

[Manufacturer]
$MfgName%=DeviceList

[Devicelist]
%USB\VID_8765&PID_1234.DeviceDesc%:USBBULK.DeV, USB\VID_8765&PID_1234

; [PreCopySection]
; HKR, ,NoSetupUI,, 1

[DestinationDirs]
USBBULK.Files.Ext = 10,System32\Drivers

[USBBULK.Dev]
CopyFiles=USBBRULK.Files.Ext
AddReg=USBBULK.AddReg

[USBBULK.Dev.NT]
CopyFiles=USBBULK.Files.Ext
AddReg=USBBULK.AddReg

[USBBULK.Dev.NT.Services]
Addservice = USBBULK, 0x00000002, USBBULK.AddService

[USBBULK.AddService]

DisplayName = %USBBULK.SvcDesc%

ServiceType =1 ; SERVICE KERNEL DRIVER
StartType =3 ; SERVICE DEMAND START
ErrorControl =1 ; SERVICE ERROR NORMAL
ServiceBinary = %10%\System32\Drivers\USBBULK.sys

LoadOrderGroup = Base
[USBBULK.AddReqg]
HKR, , DevLoader, , *ntkern

HKR, ,NTMPDriver, ,USBBULK.sys

[USBBULK.Files.Ext]
USBBulk.sys

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

79

[Strings]

MfgName="MyCompany"

USB\VID 8765&PID 1234.DeviceDesc="USB Bulk Device"
USBBULK.SvcDesc="USB Bulk device driver"

red - required modifications
green - possible modifications

You have to personalize the .inf file on the red marked positions. Changes on the
green marked positions are optional and not necessary for the correct function of the
device.

Replace the red marked positions with the personal vendor Id (VID) and product Id
(PID). These changes have to be identical with the modifications in the configuration
functions to work correct.

The required modifications of the configuration functions are described in the section
Configuration on page 42.

5.3.3 Configuration

To get emUSB up and running as well as doing an initial test, the configuration as it is
delivered should not be modified. The configuration section can later on be modified
to match your real application. The configuration must only be modified if emUSB
should be used in a final product. Refer to section Configuration on page 42 to get
detailed information about the functions which has to be adapted.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

80 CHAPTER 5 Bulk communication

5.4 Example application

Example applications for both the target (client) and the PC (host) are supplied.
These can be used for testing the correct installation and proper function of the
device running emUSB.

The application is a modified echo server (BULK_Echol.c); the application receives
data byte by byte, increments every single byte and sends it back to the host.

USB bulk
example

application.

(for example:
Echol.exe)

USB connection

Target programmed
with the example
application consistent
with the application
running on host side
(for example:
BULK_Echol.c).

To use this application, make sure to use the corresponding example files both on the
host-side as on the target side. The example applications on the PC host are named
in the same way, just without the prefix BULK_. (For example, if the host runs
Echol.exe, BULK_Echol.c has to be included into your project, compiled and down-
loaded into your target.) There are additional examples that can be used for testing
emUSB.

The following start application files are provided:

File Description

BULK_Echol.c This application was described in the upper text.

BULK_EchoFast.c This is the faster version of Bulk_Echol.c

This application can be used to test emUSB-Bulk with differ-
ent packet sizes received from and sent to the PC host.

Table 5.1: Supplied sample applications

BULK_Test.c

The example applications for the target-side are supplied in source code in the
Application directory.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

81

Depending on which application is running on the emUSB device, use one of the fol-
lowing example applications:

File Description

If the BULK_Echol.c sample application is running on the

Echol.exe emUSB-Bulk device, use this application.

If the BULK_EchoFast.c sample application is running on the

BchoFast.exe emUSB-Bulk device, use this EchoFast application.

If the BULK_Test.c application is running on the emUSB-Bulk
device, use this application to test the emUSB-Bulk stack.

Table 5.2: Supplied host applications

Test.exe

To use these examples, the application on the PC host should use the same example
file to work correctly. The example applications on the PC host are named in the
same way. The example applications for the host-side are supplied in both source
code and executable form in the Bulk\SampleApp directory. For information how to
compile the host examples refer to Compiling the PC example application on page 83.

The start application will of course later on be replaced by the real application pro-
gram. For the purpose of getting emUSB up and running as well as doing an initial
test, the start application should not be modified.

5.4.1 Running the example applications

To test the emUSB-Bulk component, build and download the application of choice for
the target-side. If you connect your target to the host via USB while the example
application is running, Windows will detect the new hardware.

To run one of the example applications, simply start the executable, for example by
double clicking it. If the USB-Bulk device is not connected to the PC or the driver is
not installed, the following message box should pop up.

USB Bulk sample application [%]

Unable to connect to USE BULEK device

If a connection can be established, it exchanges data with the target, testing the USB
connection.

Example output of Echol.exe:

% | C:AworkAUS BB ulk Stack\S hipAS egger\S ampleAppAUSBBULK_Echol_exe

USE BULK driver version: 2.42a, compiled: Nov 38 2885 14:58:58
Starting Echo...
Enter the number of hytes to be send to the echo client:

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

82

CHAPTER 5 Bulk communication

Example output of EchoFast.exe:

\workAUSBBulkStack\ShiphSeggeri5 ampleAppAUSBBULK_E choF ast exe

USE BULK driver version: 2.42a, compiled: Nov 38 2885 14:58:58
Starting Echo...
Enter the packet size in hytes {(default: 588>: _

Example output of Test.exe:

\workAUSBBulkStack\Shiph\Seggeri5 ampleAppAUSBBULK_Test.exe

USE BULK driver version: 2.42a, compiled: Nov 38 2885 14:58:58

Writing one byte
Reading one byte

If the host example application can communicate with the emUSB device, the exam-
ple application will be in interactive mode for the Echol and the EchoFast applica-
tion. In case of an error, a message box is displayed.

Error Messages

Unable to connect
to USB BULK device

Description

The USB device is not connected to the PC or the connec-
tion is faulty.

Could not write to
device

The PC sample application was not able to write one byte.

Could not read
from device (time
out)

The PC sample application was not able to read one byte.

Wrong data read

The result of the target sample application is not correct.

Table 5.3: List of error messages

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

83

5.4.2 Compiling the PC example application

For compiling the example application you need a Microsoft compiler. The compiler is
part of Microsoft Visual C++ 6.0 or Microsoft Visual Studio .Net.

. USBBULK_Start - Microzoft Yisual C++ -

[C:\.. \ApplicationAEchol . c]

JJ File Edit “iew Insert Project Build Tools Window Help

Al

Workspace '1JSBBULK_Start’ 1 project(z]
E| a Application

Echol.c

EchoFast.c

[Testc

USEEBLILK

*] USBBULK.c

! 1USBBULK.h

I D External Dependencies

4 |

B Classiiew | Filetview |

int main{int argc.
int =r:
char Restart:

char* argw[]) {

if (USBBULK_Openi) == HULL} {
_He=sageBox("Unable to connect
return 1;

_ShowDriverInfoi):

TSEEULE, SetTlmeDut(SEDD * 10007
Restart = 'N'
do {

char ac[10]:
printf{"Starting Echo..
r = _Echoli):

if (r) {

brealk:

sty

+

printf{"~nStart again? (y-n):

ac[0] = 6:

_cgetsiac):

Restart = toupper(ac[2])

if {{Restart I= '
Restart = 'Y';

} while (Restart ==
TSEEULE_Close():
if (r == 0} {

A

return r;

[« |

Feady

"

¥') &f (Restart |=

printf{"Communication with USE BULE dewice succesfull"):

to USE BULK device"):

WO o

.

[REC [COL[0VR [READ] 4|

[Ln 136, Col 1

The source code of the sample application is located in the subfolder Bulk\sam-
PLEAPP. Open the file USBBULK_Start.dsw and compile the source choose Build |
Build SampleApp.exe (Shortcut: F7). To run the executable choose Build | Exe-

cute SampleApp.exe

UMO09001 User & Reference Guide for

(Shortcut: CTRL-F5).

emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

84 CHAPTER 5 Bulk communication

5.5 Target API

This chapter describes the functions that can be used with the target system.
General information

To communicate with the host, the sample application project includes USB-specific
header and source files (USB.h, USB_Main.c, USB_Setup.c,
USB_Bulk.c,USB_Private.h). These files contain API functions to communicate with
the USB host through the emUSB driver.

Purpose of the USB Device API functions

To have an easy start up when writing an application on the device side, these API
functions have a simple interface and handle all operations that need to be done to
communicate with the host emUSB kernel mode driver.

Therefore, all operations that need to write to or read from the emUSB are handled
internally by the provided API functions.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

85

5.5.1 Target interface function list

Routine

Explanation

USB-Bulk

functions

USB_BULK_Add()

Adds an USB-Bulk interface to emUSB.

USB_BULK_CancelRead()

Cancels a non-blocking read operation
that is pending.

USB_BULK_CancelWrite ()

Cancels a non-blocking write operation
that is pending.

USB_BULK_GetNumBytesInBuffer ()

Returns the number of byte in BULK-OUT
buffer.

USB_BULK_GetNumBytesRemToRead ()

Returns the number of bytes which have
to be read.

USB_BULK_GetNumBytesToWrite ()

Returns the number of bytes which have
to be written.

USB_BULK_Read ()

USB-Bulk read.

USB_BULK_ReadOverlapped()

Non-blocking version of
USB_BULK_Read().

USB_BULK_ReadTimed ()

Starts a read operation that shall be done
within a given time-out.

USB_BULK_Receive ()

Read data from host and return immedi-
ately as soon as data has been received.

USB_BULK_SetOnRXHook ()

Installs a hook that shall be called when
an USB packet is received.

USB_BULK_WaitForTX()

Waits for a non-blocking write operation
that is pending.

USB_BULK_WaitForRX()

Waits for a non-blocking write operation
that is pending.

USB_BULK_Write ()

Starts a blocking write operation.

USB_BULK_WriteEx()

Starts a blocking write operation that
allows to specify whether a NULL packet
shall be sent or not.

USB_BULK_WriteExTimed ()

Starts an USB-Bulk WriteEx operation
that shall be done within a given time-
out.

USB_BULK_WriteOverlapped()

Non-blocking version of
USB_Bulk_Write().

USB_BULK_WriteOverlappedEx ()

USB_BULK_WriteNULLPacket ()

Sends a NULL (zero-length) packet to
host.

USB_BULK_WriteTimed ()

Starts an USB-Bulk Write operation that
shall be done within a given time-out.

Data structures

USB_BULK_INIT_DATA

Initialization structure which is required
when adding a bulk interface.

USB_ON_RX_FUNC

Function called when data is received.

Table 5.4: Target interface function list

UMO09001 User & Reference Guide for emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

86 CHAPTER 5 Bulk communication

5.5.2 USB-Bulk functions
5.5.2.1 USB_BULK_Add()

Description

Adds interface for USB-Bulk communication to emUSB.

Prototype

void USB_BULK_Add(const USB_BULK_INIT DATA * pInitData);
Parameter Description

pInitData Pointer to USB_BULK_INIT_DATA structure.

Table 5.5: USB_BULK_Add() parameter list

Additional information

USB_BULK_INIT_DATA is defined as follows:
typedef struct {

U8 EPIn; // Endpoint for sending data to the host

U8 EPOut; // Endpoint for receiving data from the host
Y

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

87

5.5.2.2 USB_BULK_CancelRead()

Description

Cancels any non-blocking/blocking read operation that is pending.

Prototype

void USB_BULK_CancelRead (void) ;

Additional information

This function shall be called when a pending asynchronous read operation should be
canceled. The function can be called from any task. In case of canceling a blocking
operation, this function must be called from another task.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

88 CHAPTER 5 Bulk communication

5.5.2.3 USB_BULK_CancelWrite()

Description

Cancels a non-blocking/blocking read operation that is pending.

Prototype
void USB_BULK_CancelWrite(void) ;

Additional information

This function shall be called when a pending asynchronously write operation should
be canceled. It can be called from any task. In case of canceling a blocking operation,
this function must be called from another task.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

89

5.5.2.4 USB_BULK_GetNumBytesinBuffer()

Description

Returns the number of bytes that are available in the internal BULK-OUT endpoint
buffer.

Prototype
unsigned USB_BULK_GetNumBytesInBuffer (void) ;

Additional information

If the host is sending more data than your target application has requested the
remaining data will be stored in an internal buffer.

The function USB_BULK_GetNumBytesInBuffer() shows how many bytes are avail-
able in this buffer.

Example:

Your host application sends 50 bytes.

Your target application only requests to receive 1 byte.

In this case the target application will get 1 byte and the remaining 49 bytes are
stored in an internal buffer.

When your target application would now call USB_BULK_GetNumBytesInBuffer() it
should return the number of bytes that are available in the internal buffer (49).

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

90 CHAPTER 5 Bulk communication

5.5.2.5 USB_BULK_GetNumBytesRemToRead()
Description
Returns the remaining number of bytes to read.

Prototype

unsigned USB_BULK_GetNumBytesRemToRead (void) ;

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

91

5.5.2.6 USB_BULK_GetNumBytesToWrite()

Description

Returns the number of bytes that should be written.

Prototype

unsigned USB_BULK_GetNumBytesToWrite (void) ;

UMO09001 User & Reference Guide for emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

92 CHAPTER 5 Bulk communication

5.5.2.7 USB_BULK_Read()
Description

Reads data from the host.

Prototype

int USB_BULK_Read(void* pData, unsigned NumBytes) ;

Parameter Description
pData Pointer to a buffer where the received data will be stored.
NumBytes Number of bytes to read.

Table 5.6: USB_BULK_Read() parameter list

Return value

Number of bytes that have been received.
In case of an error -1 is returned.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

93

5.5.2.8 USB_BULK_ReadOverlapped()

Description

Reads data from the host asynchronously.

Prototype

int USB_BULK_ReadOverlapped(void* pData, unsigned NumBytes) ;
Parameter Description

pData Pointer to a buffer where the received data will be stored.

NumBytes Number of bytes to read.

Table 5.7: USB_BULK_ReadOverlapped() parameter list

Return value

Number of bytes that have already been received or have been copied from internal
buffer.

Additional information

This function will not block the calling task. The read transfer will be initiated and the
function returns immediately. In order to synchronize, USB_BULK_WaitForRX () needs
to be called.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

94 CHAPTER 5 Bulk communication

5.5.2.9 USB_BULK_ReadTimed()

Description

Reads data from the host with a given time-out.

Prototype

int USB_BULK_ReadOverlapped(void* pData, unsigned NumBytes, unsigned ms) ;
Parameter Description

pData Pointer to a buffer where the received data will be stored.

NumBytes Number of bytes to read.

ms Time-out given in milliseconds.

Table 5.8: USB_BULK_ReadTimed() parameter list

Return value
Number of bytes that have been read within the given time-out.
Additional information

This function blocks a task until all data have been read or a time-out occurs. This
function also returns when target is disconnected from host or when a USB reset
occurrs.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

95

5.5.2.10 USB_BULK_SetOnRXHook()

Description
Sets a callback that can be set whenever a data packet was received from the host.
Prototype
void USB_BULK_SetOnRXHook (USB_ON_RX_EP * pfOnRx) ;
Parameter Description
pfOnRx Pointer to the callback function.

Table 5.9: USB_BULK_SetOnRXHook() parameter list

Additional information

Setting up a callback function may be necessary to allow a monitoring task to sus-
pend and shall be waked up when data have been received.

The callback function will be called within a interrupt service routine, so minimal
operations shall be done within this function.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

96 CHAPTER 5 Bulk communication

5.5.2.11 USB_BULK_Receive()

Description
Reads data from host and returns as soon as data has been received.
Prototype
int USB_BULK_Receive(void * pData, unsigned NumBytes) ;

Parameter Description
pData Pointer to a buffer where the received data will be stored.
NumBytes Number of bytes to read.

Table 5.10: USB_BULK_Receive() parameter list

Return value
Number of bytes that have been read.
Additional information

If no error occurs, this function returns the number of bytes received.

In case of an error, -1 is returned.

Calling UsB_BULK_Receive () will return as much data as is currently available—up to
the size of the buffer specified.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

97

5.5.2.12 USB_BULK_WaitForRX()
Description
Waits for reading data transfer from the host to be ended.
Prototype

void USB_BULK_WaitForRX (void) ;

Additional information

This function shall be called in order to synchronize task with the read data transfer
that previously initiated.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

98 CHAPTER 5 Bulk communication

5.5.2.13 USB_BULK_WaitForTX()

Description
Waits for writing data transfer to the host to be ended.

Prototype
void USB_BULK_WaitForTX(void) ;

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

99

5.5.2.14 USB_BULK_Write()

Description

Sends data to the USB host.

Prototype

int USB_BULK_Write(const void * pData, unsigned NumBytes) ;
Parameter Description

pData Data that should be written.

NumBytes Number of bytes to write.

Table 5.11: USB_BULK_Write() parameter list

Return value

Number of bytes that have been written.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

100 CHAPTER 5 Bulk communication

5.5.2.15 USB_BULK_WriteEx()
Description

Sends data to the host with the option to send a zero-length packet at the end of the
data transfer.

Prototype
int USB_BULK WriteEx(const void* pData,
unsigned NumBytes,
char SendOPacketIfRequired) ;
Parameter Description
pData Pointer to a buffer that contains the written data.
NumBytes Number of bytes to write.

Specifies that a zero-length packet shall be sent when
the last data packet to the host is a multiple of MaxPack-
etSize.

Normally MaxPacketSize for full-speed devices is 64 byte.
For high-speed devices the normal packet size is between
64-512 bytes.

Table 5.12: USB_BULK_WriteEx() parameter list

SendOPacketIfRequired

Additional information

Normally USB_BULK_Write is called to let the stack send that whole packet to the
host and send an optional zero-length packet to tell the host that this was the last
packet. This is the case when the last packet that shall be sent is MaxPacketSize
long.

When using this function, the zero-length packet handling can be controlled. This
means the function can be called when sending data shall be sent in multiple steps.
Please make sure that NumBytes is always except for the last transmission, a multi-
ple of MaxPacketSize.

Example

static U8 _aDbataBuffer[512];

static void _Send(void) {
unsigned NumBytes2Send;
unsigned NumBytesRead;

NumBytes2Send = _GetNumBytes2Send() ;

while (NumBytes2Send >= sizeof (_aDataBuffer)) {
NumBytesRead = _GetData (&_aDataBuffer([0], sizeof (_aDataBuffer));
USB_BULK_WriteEx (&_aDataBuffer[0], NumBytesRead, 0);
NumBytes2Send -= NumBytesRead;

}

USB_BULK_WriteEx (& _aDataBuffer[0], NumBytes2Send, 1);

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

101

5.5.2.16 USB_BULK_WriteExTimed()

Description

Sends data to the host with the option to send a zero-length packet at the end of the
data transfer and a time-out option.

Prototype
int USB_BULK_WriteEx(const void* pData,
unsigned NumBytes,
char SendOPacketIfRequired
unsigned ms) ;
Parameter Description
pData Pointer to a buffer that contains the written data.
NumBytes Number of bytes to write.

Specifies that a zero-length packet shall be sent when
the last data packet to the host is a multiple of MaxPack-
etSize.

Normally MaxPacketSize for full-speed devices is 64 byte.
For high-speed devices the normal packet size is between
64-512 bytes.

ms Time-out

Table 5.13: USB_BULK_ReadOverlapped() parameter list

SendOPacketIfRequired

Return value
Number of bytes that have been written within the given time-out.
Additional information

This function blocks a task until all data have been written or a time-out occurs. This
function also returns when target is disconnected from host or when a USB reset
occurred.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

102 CHAPTER 5 Bulk communication

5.5.2.17 USB_BULK_WriteOverlapped()

Description

Write data to the host asynchronously.

Prototype

int USB_BULK_WriteOverlapped(const void* pData, unsigned NumBytes) ;
Parameter Description

pData Pointer to data that should be sent to the host.

NumBytes Number of bytes to write.

Table 5.14: USB_BULK_WriteOverlapped() parameter list

Return value
Number of bytes that have already been sent to the HOST.
Additional information

This function will not block the calling task. The write transfer will be initiated and
the function returns immediately. In order to synchronize, USB_BULK_WaitForTX()
needs to be called.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

103

5.5.2.18 USB_BULK_WriteOverlappedEx()

Description
Write data to the host asynchronously.
Prototype
int USB_BULK WriteOverlappedEx (const void* pData,
unsigned NumBytes,
char SendOPacketIfRequired) ;
Parameter Description
pData Pointer to data that should be sent to the host.
NumBytes Number of bytes to write.

Specifies that a zero-length packet shall be sent when
the last data packet to the host is a multiple of MaxPack-
etSize.

Normally MaxPacketSize for full-speed devices is 64 byte.
For high-speed devices the normal packet size is between
64-512 bytes.

Table 5.15: USB_BULK_WriteOverlappedEx() parameter list

SendOPacketIfRequired

Return value
Number of bytes that have already been sent to the HOST.
Additional information

This function will not block the calling task. The write transfer will be initiated and
the function returns immediately. In order to synchronize, USB_BULK_WaitForTX ()
needs to be called.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

104 CHAPTER 5 Bulk communication

5.5.2.19 USB_BULK_WriteTimed()

Description

Writes data from the host with a given time-out.

Prototype

int USB_BULK_WriteOverlapped(const void* pData,
unsigned NumBytes,
unsigned ms) ;

Parameter Description

pData Pointer to a buffer that contains the written data.

NumBytes Number of bytes to write.

ms Time-out

Table 5.16: USB_BULK_ReadOverlapped() parameter list

Return value
Number of bytes that have been written within the given time-out.
Additional information

This function blocks a task until all data have been written or a time-out occurs. This
function also returns when target is disconnected from host or when a USB reset
occurred.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

105

5.5.2.20 USB_BULK_WriteNULLPacket()
Description

Sends a zero-length packet to the host.

Prototype
void USB_BULK_WriteNULLPacket (void) ;

Additional information

This function is useful to indicate that either no data are available or to indicate that
this is the last packet of the data stream.

In normal cases sending a zero-length packets as a termination packet is not neces-
sary since the stack handles this automatically when calling any USB_BULK write
function (except for USB_BULK_WriteEx routines).

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

106 CHAPTER 5 Bulk communication

5.5.3 Data structures

5.5.3.1 USB_BULK_INIT_DATA
Description

Initialization structure which is required when adding a bulk interface to emUSB-
Bulk.

Prototype

typedef struct {
U8 EPIn;
U8 EPOut;
} USB_BULK_INIT DATA;

Member Description
EPIn Endpoint for sending data to the host.
EPOut Endpoint for receiving data from the host

Table 5.17: USB_BULK_INIT_DATA elements

Example

Example excerpt from BULK_Echol.c:

static void _AddBULK (void) {
static U8 _abOutBuffer [USB_MAX_PACKET_SIZE];
USB_BULK_INIT DATA Init;

Init.EPIn
Init.EPOut

USB_AddEP (1, USB_TRANSFER_TYPE_BULK, USB_MAX PACKET_SIZE, NULL, O0);
USB_AddEP (0, USB_TRANSFER_TYPE_BULK, USB_MAX_ PACKET_ SIZE,
_abOutBuffer, USB_MAX PACKET_SIZE) ;

USB_BULK_Add (&Init) ;

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

107

5.5.3.2 USB_ON_RX_FUNC

Description

Callback function prototype that is used when calling the function

Prototype

typedef void USB_ON_RX_FUNC (const U8 * pData, unsigned NumBytes) ;
Member Description

pData Pointer to the data that have been received.

NumBytes Number of bytes that have been received.

Table 5.18: USB_ON_RX_FUNC elements

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

108 CHAPTER 5 Bulk communication

5.6 Host API

This chapter describes the functions that can be used with the Windows host system.

General information

To communicate with the target USB-Bulk stack, the sample application project
includes USB-Bulk specific source and header files (USBBulk.c, USBBULK.h). These
files contain API functions to communicate with the USB-Bulk target through the
USB-Bulk driver.

Purpose of the USB Host API functions

To have an easy start-up when writing an application on the host side, these API
functions have a simple interface and handle all required operations to communicate
with the target USB-Bulk stack.

Therefore, all operations that need to open a channel, writing to or reading from the
USB-Bulk stack are handled internally by the provided API functions.

Additional information can also be retrieved from the USB driver.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

5.6.1 Host API list

109

The functions below are available on the host (Windows PC) side.

Function

Description

USB-Bulk basic functions

USBBULK_Open ()

Opens pipes to communicate with the
first USB-Bulk device.

USBBULK_OpenEx ()

Opens pipes to communicate with a spec-
ified USB-Bulk device.

USBBULK_Close()

Closes the pipes which are used for the
communication with the first USB-Bulk
device.

USBBULK_CloseEx ()

Closes the pipes which are used for the
communication to a specified USB-Bulk
device.

USB-Bulk direct input/output functions

USBBULK_Read ()

Reads data from the first USB-Bulk
device.

USBBULK_ReadEx ()

Reads data from a specified USB-Bulk
device.

USBBULK_Write ()

Writes data to the first USB-Bulk device.

USBBULK_WriteEx()

Writes data to a specified USB-Bulk
device.

USBBULK_WriteRead()

Reads and writes data from/to the first
USB-Bulk device.

USBBULK_WriteReadEx ()

Reads and writes data from/to a specified
USB-Bulk device.

USB-Bulk control functions

USBBULK_GetDriverCompileDate ()

Gets the compile date and time of the
USB-Bulk driver.

USBBULK_GetDriverVersion ()

Retrieves the version of the USB-Bulk
driver.

USBBULK_GetConfigDescriptor ()

Gets the received target USB configura-
tion descriptor of the first USB-Bulk
device.

USBBULK_GetConfigDescriptorEx ()

Gets the received target USB configura-
tion descriptor of a specified USB-Bulk
device.

USBBULK_GetMode ()

Returns the read operation mode of the
USB-Bulk device.

USBBULK_GetModeEx ()

Returns the read operation mode of the
USB-Bulk driver.

USBBULK_GetNumAvailableDevices ()

Returns the number of connected USB-
Bulk devices.

USBBULK_GetReadMaxTransferSize ()

Retrieves the maximum transfer size of a
read transaction the driver can receive
from an application.

USBBULK_GetReadMaxTransferSizeEx ()

Retrieves the maximum transfer size of a
read transaction the driver can receive
from an application.

USBBULK_GetSN()

Returns the serial number of the USB tar-
get device.

USBBULK_GetWriteMaxTransferSize ()

Retrieves the maximum transfer size of a
write transaction the driver can handle
from an application.

Table 5.19: Host API function list

UMO09001 User & Reference Guide for emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

110

CHAPTER 5

Bulk communication

Function

Description

USBBULK_GetWriteMaxTransferSizeEx ()

Retrieves the maximum transfer size of a
write transaction the driver can handle
from an application.

USBBULK_SetMode ()

Sets the read operation mode of the
USB-Bulk driver.

USBBULK_SetModeEx ()

Sets the read operation mode of the
USB-Bulk driver.

USBBULK_SetTimeout ()

Sets a read time-out for a read transac-
tion.

USBBULK_SetTimeoutEx ()

Sets a read time-out for a read transac-
tion.

USBBULK_SetUSBIA()

Sets the vendor Id and product id that
are used for connecting to the device.

Table 5.19: Host API function list

UMO09001 User & Reference Guide for emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

111

5.6.2 USB-Bulk Basic functions

5.6.2.1 USBBULK_Open()
Description

Opens a read and write connection to the first connected target device using emUSB-
Bulk.

Prototype
void * USBBULK_Open (void) ;
Return value

"I'= NULL' if a connection to the target running emUSB-Bulk could be established.
'== NULL' if a connection could not be established.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

112 CHAPTER 5 Bulk communication

5.6.2.2 USBBULK_OpenEx()

Description

Opens a read and write connection to a specified device using the emUSB-Bulk ker-
nel-mode driver.

Prototype
void * USBBULK_OpenEx (unsigned Id);

Parameter Description
Id Id number of the device [0..31].

Table 5.20: USBBULK_OpenEx() parameter list

Return value

'I'= NULL' if a connection to the target running emUSB-Bulk could be established.
'== NULL' if a connection could not be established.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

113

5.6.2.3 USBBULK_Close()

Description
Closes all connections to the first target device using emUSB-Bulk.

Prototype
void USBBULK_Close(void) ;

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

114 CHAPTER 5 Bulk communication

5.6.2.4 USBBULK_CloseEx()

Description
Closes all connections to a specified device using emUSB-Bulk.

Prototype
void USBBULK_CloseEx (unsigned Id);

Parameter Description

Id Id number of the device [0..31].
Table 5.21: USBBULK_CloseEx() parameter list

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

115

5.6.3 USB-Bulk direct input/output functions

5.6.3.1 USBBULK_Read()
Description

Reads data from the first target device running emUSB-Bulk.

Prototype
int USBBULK_Read(void * pBuffer, unsigned NumBytes) ;

Parameter Description
pBuffer Pointer to a buffer where the received data will be stored.
NumBytes Number of bytes to read.

Table 5.22: USBBULK_Read() parameter list

Return value

'== NumBytes': All bytes have successfully been read.

'< NumBytes': A time-out occurred during read, when the emUSB driver is in normal
mode, otherwise (short-read mode) the emUSB driver returns the number of bytes
that have been read from the device before a timeout occured (less than NumBytes).
‘== -1': Cannot read from the device.

Additional information

USBBULK_Read () sends the read request to the USB-Bulk driver. Because the driver
can only read a certain amount of bytes from the device - the default value is 64
Kbytes; the driver will abort the transaction.

Therefore if NumBytes exceeds this limit, USBBULK_Read () will read the desired Num-
Bytes in chunks of the maximum read size the driver can handle.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

116 CHAPTER 5 Bulk communication

5.6.3.2 USBBULK_ReadEx()

Description

Reads data from a specified target device running emUSB-Bulk.

Prototype

int USBBULK_ReadEx (unsigned Id, void * pBuffer, unsigned NumBytes) ;
Parameter Description

Id Id number of the device [0..31].

pBuffer Pointer to a buffer where the received data will be stored.

NumBytes Number of bytes to read.

Table 5.23: USBBULK_ReadEx() parameter list

Return value

'== NumBytes': All bytes have successfully been read.

'< NumBytes': A time-out occurred during read, when the emUSB driver is in normal
mode. Otherwise the emUSB driver returns the number of bytes that have been read
from the device.

'== -1": Cannot read from device.

Additional information

USBBULK_ReadEx() sends the read request to the emUSB driver. Because the driver
can only read a certain amount of bytes from the device - the default value is 64
Kbytes; the driver will abort the transaction.

Therefore, if NumBytes exceeds this limit, USBBULK_Read () will read the desired Num-
Bytes in chunks of the maximum read size the driver can handle.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

117

5.6.3.3 USBBULK_Write()

Description
Writes data to the first target device running emUSB-Bulk.

Prototype

int USBBULK Write(const void * pBuffer, unsigned NumBytes) ;
Parameter Description

pBuffer Pointer to a buffer to transfer.

NumBytes Number of bytes to write.

Table 5.24: USBBULK_Write() parameter list

Return value

'== NumBytes': All bytes have successfully been written.
'< NumBytes': A write error occurred.

Additional information

USBBULK_Write () sends the write request to the emUSB driver. Because the driver
can only write a certain amount of bytes to device - the default value is 64 Kbytes;
the driver will abort the transaction.

Therefore if NumBytes exceeds this limit, USBBULK_Write() will write the desired
NumBytes in chunks of the maximum write size the driver can handle.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

118 CHAPTER 5 Bulk communication

5.6.3.4 USBBULK_WriteEx()

Description

Writes data to a specified target device running emUSB-Bulk.

Prototype

int USBBULK_WriteEx (unsigned Id, const void * pBuffer, unsigned NumBytes) ;
Parameter Description

Id Id number of device [0..31].

pBuffer Pointer to a buffer to transfer.

NumBytes Number of bytes to write.

Table 5.25: USBBULK_WriteEx() parameter list

Return value

'== NumBytes': All bytes have successfully been written.
'< NumBytes': A write error occurred.

Additional information

USBBULK_WriteEx () sends the write request to the emUSB driver. Since the driver
can only write a certain amount of bytes to the device - the default value is 64
Kbytes; the driver will abort the transaction.

Therefore if NumBytes exceeds this limit, USBBULK_Write() will write the desired
NumBytes in chunks of the maximum write size the driver can handle.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

119

5.6.3.5 USBBULK_WriteRead()
Description

Writes and reads data to and from the first target device running emUSB-Bulk.

Prototype

int USBBULK_WriteRead(const void * pWrBuffer, unsigned WrNumBytes
void * pRdBuffer, unsigned RdANumBytes) ;

Parameter Description
pWrBuffer Pointer to a buffer to transfer.
WrNumBytes Number of bytes to write.
pRdABuffer Pointer to a buffer where the received data will be stored.
RANumBytes Number of bytes to read.

Table 5.26: USBBULK_WriteRead() parameter list

Return value

'== NumBytes': All bytes have successfully been read after writing the data.

'< NumBytes': A time-out occurred during read, when the emUSB driver is in normal
mode. Otherwise the emUSB driver returns the number of bytes that have been read
from the device.

‘== -1": Cannot read from the device after write.

Additional information

This function cannot be used with short mode enabled.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

120 CHAPTER 5 Bulk communication

5.6.3.6 USBBULK_WriteReadEx()

Description
Writes and reads data to and from specified target device running emUSB-Bulk.

Prototype
int USBBULK_WriteReadEx (unsigned 1d,
const void * pWrBuffer,
unsigned WrNumBytes
void * pRdBuffer,
unsigned RANumBytes) ;
Parameter Description
Id Id number of device [0..31].
pWrBuffer Pointer to a buffer to transfer.
WrNumBytes Number of bytes to write.
pRABuffer Pointer to a buffer where the received data will be stored.
RANumBytes Number of bytes to read.

Table 5.27: USBBULK_WriteReadEx() parameter list

Return value

'== NumBytes': All bytes have successfully been read after writing the data.
'< NumBytes': A time-out occurred during read, when the emUSB driver is in normal
mode, otherwise the emUSB driver returns the number of bytes that have been read

from device.
'== -1’ - Cannot read from the device after write.

Additional information

This function cannot be used with short mode enabled.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

121

5.6.4 USB-Bulk Control functions
5.6.4.1 USBBULK_GetDriverCompileDate()

Description

Gets the compile date and time of the emUSB bulk communication driver.

Prototype

unsigned USBBULK_GetDriverCompileDate(char * s, unsigned Size);

Parameter Description
s Pointer to a buffer to store the compile date string.
Size Size, in bytes, of the buffer pointed to by s.

Table 5.28: USBBULK_GetDriverCompileDate() parameter list

Return value

If the function succeeds, the return value is nonzero and the buffer pointed by s con-
tains the compile date and time of the emUSB driver in the standard format:

mm dd yyyy hh:mm:ss

If the function fails, the return value is zero.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

122 CHAPTER 5 Bulk communication

5.6.4.2 USBBULK_GetDriverVersion()

Description
Retrieves the version of the emUSB bulk communication driver.

Prototype

unsigned USBBULK_GetDriverVersion (void) ;

Return value

If the function succeeds, the return value is the driver version of the driver as deci-
mal value:

<Major Version><Minor Version><Subversion>. 24201 means 2.42a
If the function fails, the return value is zero; the version could not be retrieved.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

123

5.6.4.3 USBBULK_GetConfigDescriptor()

Description

Gets the received target USB configuration descriptor of the first device running

emUSB-Bulk.
Prototype

int USBBULK_GetConfigDescriptor (void * pBuffer, int Size);

Parameter Description
pBuffer Pointer to a buffer to store the config descriptor.
Size Number of bytes to read.

Table 5.29: USBBULK_GetConfigDescriptor() parameter list

Return value

If the function succeeds, the return value is nonzero and the buffer pointed by
pBuffer contains the USB target device configuration descriptor.

If the function fails, the return value is zero.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

124

CHAPTER 5 Bulk communication

5.6.4.4 USBBULK_GetConfigDescriptorEx()

Description

Gets the received target USB configuration descriptor of a specified device running

emUSB-Bulk.
Prototype

int USBBULK_GetConfigDescriptor (unsigned Id, void * pBuffer, int Size);

Parameter Description
Id Id number of the device [0..31].
pBuffer Pointer to a buffer to store the config descriptor.
Size Number of bytes to read.

Table 5.30: USBBULK_GetConfigDescriptorEx() parameter list

Return value

If the function succeeds, the return value is nonzero and the buffer pointed by
pBuffer contains the USB target device configuration descriptor.
If the function fails, the return value is zero.

UMO09001 User & Reference Guide for emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

125

5.6.4.5 USBBULK_GetMode()
Description

Returns the read operation mode of the driver for the first device running emUSB-
Bulk.

Prototype
unsigned USBBULK_GetMode (void) ;
Return value

USBBULK_MODE_BIT ALLOW_SHORT_ READ - Short read mode is enabled.
0 - Short read mode is disabled.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

126 CHAPTER 5 Bulk communication

5.6.4.6 USBBULK_GetModeEx()

Description
Returns the read operation mode of the driver for a specified device running emUSB-
Bulk.
Prototype
unsigned USBBULK_GetModeEx (unsigned Id);
Parameter Description
Id Id number of device [0..31].

Table 5.31: USBBULK_GetModeEx() parameter list

Return value

USBBULK_MODE_BIT_ALLOW_SHORT_READ - Short read mode is enabled.
0 - Short read mode is disabled.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

127

5.6.4.7 USBBULK_GetNumAvailableDevices()
Description

Returns the number of connected USB-Bulk devices.

Prototype
unsigned USBBULK_GetNumAvailableDevices (U32 * pMask) ;

Parameter Description

Pointer to a U32 variable to receive the connected device mask. This
parameter can be NULL.
Table 5.32: USBBULK_GetNumAvailableDevices() parameter list

pMask

Return value

If the function succeeds, the return value is the number of available devices running
emUSB-Bulk. For each emUSB device that is connected, a bit in pMask is set.

For example if device 0 and device 2 are connected to the host, the value pMask
points to will be 0x00000005.

If the function fails, the return value is zero.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

128 CHAPTER 5 Bulk communication

5.6.4.8 USBBULK_GetReadMaxTransferSize()

Description

Retrieves the maximum transfer size of a read transaction the driver can receive
from an application for the first device running emUSB-Bulk.

Prototype

unsigned USBBULK_GetReadMaxTransferSize(void) ;

Return value

If the function succeeds, the return value is the maximum transfer size in bytes the
driver can accept from an application.
If the function fails, the return value is zero.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

129

5.6.4.9 USBBULK_GetReadMaxTransferSizeEx()

Description

Retrieves the maximum transfer size of a read transaction the driver can receive
from an application for a specified device running emUSB-Bulk.

Prototype
unsigned USBBULK_GetReadMaxTransferSizeEx (unsigned Id);

Parameter Description

Id Id number of device [0..31].
Table 5.33: USBBULK_GetReadMaxTransferSizeEx() parameter list

Return value

If the function succeeds, the return value is the maximum transfer size in bytes the
driver can accept from an application.
If the function fails, the return value is zero.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

130 CHAPTER 5 Bulk communication

5.6.4.10 USBBULK_GetSN()
Description

Retrieves the USB serial number as a string that was returned by the device during
the enumeration.

Prototype
int USBBULK_GetSN(unsigned Id, char * pBuffer, unsigned NumBytes) ;

Parameter Description
Id Id number of device [0..31].
pBuffer Pointer to a buffer to store the serial number of the device.
NumBytes Size of the buffer in bytes.

Table 5.34: USBBULK_GetSN() parameter list

Return value

If the function succeeds, the return value is nonzero and the buffer pointed by
pBuffer contains the serial number of the device running emUSB-Bulk.
If the function fails, the return value is zero.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

131

5.6.4.11 USBBULK_GetWriteMaxTransferSize()

Description

Retrieves the maximum transfer size of a write transaction the driver can handle
from an application (for the first device running emUSB-Bulk).

Prototype

unsigned USBBULK_GetWriteMaxTransferSize(void) ;

Return value

If the function succeeds, the return value is the maximum transfer size in bytes the
driver can accept from an application to send data to the target device.
If the function fails, the return value is zero.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

132 CHAPTER 5 Bulk communication

5.6.4.12 USBBULK_GetWriteMaxTransferSizeEx()

Description

Retrieves the maximum transfer size of a write transaction the driver can handle
from an application for a specified device running emUSB-Bulk.

Prototype
unsigned USBBULK_GetWriteMaxTransferSizeEx (unsigned Id);

Parameter Description

Id Id number of device [0..31].
Table 5.35: USBBULK_GetWriteMaxtransferSizeEx() parameter list

Return value

If the function succeeds, the return value is the maximum transfer size in bytes the
driver can accept from an application to send data to the target device.
If the function fails, the return value is zero.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

133

5.6.4.13 USBBULK_SetMode()

Description

Sets the read operation mode of the driver for a device running emUSB-Bulk.

Prototype

unsigned USBBULK_SetMode (unsigned Mode) ;

Parameter Description

Read and write mode for the USB-Bulk driver.

Mode This is a combination of the following flags, combined by binary OR:
USBBULK_MODE_BIT_ ALLOW_SHORT_READ

Table 5.36: USBBULK_SetMode() parameter list

Return value

If the function succeeds, the return value is nonzero. The read and write mode for
the driver has been successfully set.
If the function fails, the return value is zero.

Additional information

USBBULK_MODE_BIT_ALLOW_SHORT_READ allows short read transfers. Short transfers
are transfers of less bytes than requested. If this bit is specified, the read function
USBBULK_Read () returns as soon as data is available, even if it is just a single byte.

Example

static void _TestMode (void) {
unsigned Mode;
char * pText;

Mode = USBBULK_GetMode() ;
if (Mode & USBBULK_MODE_BIT ALLOW_SHORT_ READ) {

pText = "USE_SHORT_MODE";
} else {
pText = "USE_NORMAL_MODE";

}

printf ("USB-Bulk driver is in %s\n", pText);

printf ("Set mode to USBBULK_MODE_BIT ALLOW_SHORT READ\n");
USBBULK_SetMode (USBBULK_MODE_BIT_ALLOW_SHORT_ READ) ;

Mode = USBBULK_GetMode () ;

if (Mode & USBBULK_MODE_BIT ALLOW_SHORT_READ) {

pText = "USE_SHORT_MODE";
} else {
pText = "USE_NORMAL_MODE";

}

printf ("USB-Bulk driver is now in %s\n", pText);

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

134 CHAPTER 5 Bulk communication

5.6.4.14 USBBULK_SetModeEXx()
Description

Sets the read operation mode of the driver for a specified device running emUSB-
Bulk.

Prototype

unsigned USBBULK_SetModeEx (unsigned Id, unsigned Mode) ;

Parameter Description
1d Id of the device.
Read and write mode for the USB-Bulk driver.
Mode This is a combination of the following flags, combined by binary or:
USBBULK_MODE_BIT_ALLOW_SHORT_READ

Table 5.37: USBBULK_SetModeEx() parameter list

Return value

If the function succeeds, the return value is nonzero. The read and write mode for
the driver has been successfully set.
If the function fails, the return value is zero.

Additional information

USBBULK_MODE_BIT_ALLOW_SHORT_READ allows short read transfers. Short transfers
are transfers of less bytes than requested. If this bit is specified, the read function
USBBULK_ReadEx () returns as soon as data is available, even if it is just a single
byte.

Example

static void _TestModeEx (unsigned DeviceId) ({
unsigned Mode;
char * pText;

Mode = USBBULK_GetModeEx (DeviceId) ;
if (Mode & USBBULK_MODE_BIT ALLOW_SHORT_ READ) {

pText = "USE_SHORT_MODE";
} else {
pText = "USE_NORMAL_MODE";

}

printf ("USB-Bulk driver is in %s for device %d\n", pText, DeviceId);
printf ("Set mode to USBBULK_MODE_BIT ALLOW_SHORT READ\n");
USBBULK_SetModeEx (DeviceId, USBBULK_MODE_BIT_ ALLOW_SHORT_ READ) ;

Mode = USBBULK_GetModeEx (DeviceId) ;

if (Mode & USBBULK_MODE_BIT_ALLOW_SHORT_READ) {

pText = "USE_SHORT_MODE";
} else {
pText = "USE_NORMAL_MODE";

}

printf ("USB-Bulk driver is now in %s for device %d\n", pText, DevicelId);

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

135

5.6.4.15 USBBULK_SetTimeout()

Description
Sets a read time-out for a read operation to the first device running emUSB-Bulk.

Prototype
void USBBULK_SetTimeout (int Timeout) ;

Parameter Description

Timeout Timeout in milliseconds set for a read operation.
Table 5.38: USBBULK_SetTimeout() parameter list

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

136 CHAPTER 5 Bulk communication

5.6.4.16 USBBULK_SetTimeoutEx()

Description

Sets a read time-out for a read operation.

Prototype

void USBBULK_SetTimeout (unsigned Id, int Timeout) ;
Parameter Description

Id Id number of device [0..31].

Timeout Timeout in milliseconds set for a read operation.

Table 5.39: USBBULK_SetTimeOutEx() parameter list

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

137

5.6.4.17 USBBULK_SetUSBId()

Description
Sets the Vendor id and product id that are used for connecting to the device.

Prototype

void USBBULK_SetUSBIdA(Ul6 VendorId, Ul6 ProductId);
Parameter Description

VendorId The vendor id that was assigned by USB.org.

ProductId The product id that is used for the device.

Table 5.40: USBBULK_SetUSBId() parameter list

Additional information

It is necessary to call this function first before opening any connection to the device.
The initial values for these IDs are:

VendorId = 0x8765

ProductId = 0x1234

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

138 CHAPTER 5 Bulk communication

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

139

Chapter 6
Bulk Host API V2

This chapter describes a new version of the Bulk Host API.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

140 CHAPTER 6 Bulk Host API V2

6.1 Bulk Host API V2

This chapter describes the functions that can be used with the Windows host system.
General information

The Bulk API V2 was introduced because the Bulk API V1 is not as flexible as required
by modern-day applications.

Improvements in the Bulk API V2 include but are not limited to:

e Dynamic addition of enumerated devices
e Run-time configuration of Vendor IDs and Product IDs
e Masking of multiple Product and Vendor IDs

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

6.1.1

UMO09001 User & Reference Guide for emUSB

Bulk Host API V2 list

141

The functions below are available on the host (Windows PC) side.

Function

Description

USB-Bulk basic

functions

USBBULK_Open (

Opens an existing device.

USBBULK_Close

Closes an opened device.

)
0
USBBULK_Init ()

Initializes the API module.

USBBULK_Exit ()

Called on exit.

USBBULK_SetUSBId ()

Sets the Vendor and Product IDs.

USB-Bulk direct input/output functions

USBBULK_Read()

Reads from an opened device.

USBBULK_Write ()

Writes data to the device.

USBBULK_WriteRead()

Writes and reads from the device.

USBBULK_CancelRead()

Cancels an initiated read.

USBBULK_ReadTimed ()

Reads from an opened device with a
time-out.

USBBULK_WriteTimed ()

Writes data to the device with a time-
out.

USBBULK_FlushRx()

Removes data from the receive buffer.

USB-Bulk control functions

USBBULK_GetConfigDescriptor ()

Returns the configuration descriptor of
the device.

USBBULK_GetMode ()

Returns the transfer mode of the
device.

USBBULK_GetReadMaxTransferSize ()

Returns the max size the driver can
read at once.

USBBULK_GetWriteMaxTransferSize ()

Returns the max size the driver can
write at once.

USBBULK_ResetPipe ()

Resets the pipes that are opened to
the device.

USBBULK_ResetDevice ()

Resets the device via a USB reset.

USBBULK_SetMode ()

Set the read and write mode of the
device.

USBBULK_SetReadTimeout ()

Set the read time-out for an opened
device.

USBBULK_SetWriteTimeout ()

Set the write time-out for an opened
device.

USBBULK_GetEnumTickCount ()

Returns the time when the USB device
has been enumerated.

USBBULK_GetReadMaxTransferSizeDown ()

Returns the max read transfer size of
the device.

USBBULK_GetWriteMaxTransferSizeDown ()

Returns the max write transfer size of
the device.

USBBULK_SetReadMaxTransferSizeDown ()

Set the max read transfer size of the
device.

USBBULK_SetWriteMaxTransferSizeDown ()

Set the max write transfer size of the
device.

USBBULK_GetSN ()

Gets the serial number of the device.

USBBULK_GetDevInfo()

Retrieves information about an opened
USBBULK device.

USBBULK_GetProductName ()

Returns the product name.

USBBULK_GetVendorName ()

Returns the vendor name.

Table 6.1: Bulk Host API V2 function list

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

142 CHAPTER 6 Bulk Host API V2

Function Description
USB-Bulk general GET functions
USBBULK_GetDriverCompileDate () Gets the compile date of the driver.
USBBULK_GetDriverVersion () Returns the driver version.
USBBULK_GetVersion/() Returns the USBBULK API version.
. , Returns the number of available

USBBULK_GetNumAvailableDevices () X

devices.

Returns the set Product and Vendor
USBBULK_GetUSBIA () IDs

Data structures

Device information structure (Vendor

USBBULK_DEV_INFO ID, Product ID, SN, Device Name).

Table 6.1: Bulk Host API V2 function list

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

143

6.1.2 USB-Bulk Basic functions
6.1.2.1 USBBULK_Open()

Description

Opens an existing device. The id of the device can be retrieved by the function
USBBULK_CetNumAvailableDevices () via the pDeviceMask parameter. Each bit set in
the DeviceMask represents an available device. Currently 32 devices can be managed

at once.

Prototype

USBBULK_API USB_BULK_HANDLE WINAPI USBBULK_Open (unsigned DevIndex) ;

Parameter

Description

Id

0..31 Device Id to be opened.

Table 6.2: USBBULK_Open() parameter list

Return value

=0 - Handle to the opened device.
== (0 - Device cannot be opened.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

144 CHAPTER 6 Bulk Host API V2

6.1.2.2 USBBULK_Close()

Description

Closes an opened device.

Prototype

USBBULK_API void WINAPI USBBULK_Close (USB_BULK_HANDLE hDevice) ;
Parameter Description

hDevice Handle to the device that shall be closed.

Table 6.3: USBBULK_Close() parameter list

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

145

6.1.2.3 USBBULK_Init()
Description

This function needs to be called first. This makes sure that all structures and threads
have been initialized. It also sets a callback in order to be notified when a device is
added or removed.

Prototype

USBBULK_API void WINAPI USBBULK_Init (USBBULK_NOTIFICATION_FUNC *
pfNotification, void * pContext) ;

Parameter Description
pfNotification Pointer to the user callback.
pContext Context data that shall be called with the callback function.
Table 6.4: USBBULK_Init() parameter list
Example:
/***
*
* _OnDevNotify
*
* Function description:
* Is called when a new device is found or an existing device is removed.
*
* Parameters:
* pContext - Pointer to a context given when USBBULK_Init is called
* Index - Device Index that has been added or removed.
* Event - Type of event, currently the following are available:
* USBBULK_DEVICE_EVENT_ADD
* USBBULK_DEVICE_EVENT_REMOVE
*
*/
static void __stdcall _OnDevNotify (void * pContext, unsigned Index,

USBBULK_DEVICE_EVENT Event) {
switch (Event) {
case USBBULK_DEVICE_EVENT_ADD:
printf ("The following DevIndex has been added: %d", Index) ;
NumDevices = USBBULK_GetNumAvailableDevices ((U32 *)&DeviceMask) ;
break;
case USBBULK_DEVICE_EVENT_REMOVE:
printf ("The following DevIndex has been removed: %d", Index) ;
NumDevices = USBBULK_GetNumAvailableDevices ((U32 *)&DeviceMask) ;
break;
}
}

void MainTask (void) {

<...>
USBBULK_Init (_OnDevNotify, NULL) ;
<...>

}

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

146 CHAPTER 6 Bulk Host API V2

6.1.2.4 USBBULK_Exit()
Description
This is a cleanup function, it shall be called when exiting the application.
Prototype

USBBULK_API void WINAPI USBBULK_Exit (void) ;

Additional information

We recommend to call this function before exiting the application in order to remove
all handles and ressources that have been allocated.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

147

6.1.2.5 USBBULK_SetUSBId()

Description
Set the Vendor and Product ID mask the USBBULK API should look for.

Prototype
USBBULK_API void WINAPI USBBULK_SetUSBId(Ul6 VendorId, Ul6 ProductId);
Parameter Description
The desired Vendor ID mask that shall be used with the USBBULK
VendorId API
The desired Product ID mask that shall be used with the USBBULK
ProductId API

Table 6.5: USBBULK_SetUSBId() parameter list

Additional information

It is necessary to call this function first before opening any connection to the device.
The initial values for these IDs are:

VendorId = 0x8765

ProductId = 0x1234

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

148 CHAPTER 6 Bulk Host API V2

6.1.3 USB-Bulk direct input/output functions
6.1.3.1 USBBULK_Read()

Description
Reads data from target device running emUSB-Bulk.

Prototype

USBBULK_API int WINAPI USBBULK_Read (USB_BULK_HANDLE hDevice,
void * pBuffer, int NumBytes) ;

Parameter Description
hDevice Handle to the opened device.
pBuffer Pointer to a buffer that shall store the data.
NumBytes Number of bytes to be read.

Table 6.6: USBBULK_Read() parameter list

Return value

'== NumBytes': All bytes have successfully been read.

'< NumBytes': A time-out occurred during read, when the emUSB driver is in normal
mode, otherwise the emUSB driver returns the number of bytes that have been read
from device.

‘<= -1": Cannot read from the device.

Additional information

USBBULK_Read () sends the read request to the USB-Bulk driver. Because the driver
can only read a certain amount of bytes from the device - the default value is 64
Kbytes; the driver will abort the transaction.

Therefore if NumBytes exceeds this limit, USBBULK_Read () will read the desired Num-
Bytes in chunks of the maximum read size the driver can handle.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

149

6.1.3.2 USBBULK_Write()
Description

Writes data to the device.

Prototype

USBBULK_API int WINAPI USBBULK Write (USB_BULK_HANDLE hDevice,
const void * pBuffer, int NumBytes) ;

Parameter Description
hDevice Handle to the opened device.
pBuffer Pointer to a buffer that contains the data.
NumBytes Number of bytes to be written.

Table 6.7: USBBULK_Write() parameter list

Return value

'== NumBytes': All bytes have successfully been written.
'< NumBytes': A write error occurred.
‘<= -1": Cannot write to the device.

Additional information

USBBULK_Write () sends the write request to the emUSB driver. Because the driver
can only write a certain amount of bytes to device - the default value is 64 Kbytes;
the driver will abort the transaction.

Therefore if NumBytes exceeds this limit, USBBULK _Write () will write the desired
NumBytes in chunks of the maximum write size the driver can handle.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

150 CHAPTER 6 Bulk Host API V2

6.1.3.3 USBBULK_WriteRead()
Description

Writes and reads data to and from target device running emUSB-Bulk.

Prototype

USBRBULK_API int WINAPI USBBULK_WriteRead (USB_BULK_HANDLE hDevice,
const void * pWrBuffer, int WrNumBytes, void * pRdBuffer, int RdNumBytes) ;

Parameter Description
hDevice Handle to the opened device.
pWrBuffer Pointer to a buffer that contains the data.
WrNumBytes Number of bytes to be written.
pRABuffer Pointer to a buffer that shall store the data.
RANumBytes Number of bytes to be read.

Table 6.8: USBBULK_WriteRead() parameter list

Return value

'== NumBytes': All bytes have successfully been read after writing the data.

'< NumBytes': A time-out occurred during read, when the emUSB driver is in normal
mode. Otherwise the emUSB driver returns the number of bytes that have been read
from the device.

‘<= -1": Cannot read from the device after write.

Additional information

This function can not be used when short read mode is enabled.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

151

6.1.3.4 USBBULK_CancelRead()

Description

This function cancels an initiated read operation.

Prototype

USBBULK_API void WINAPI USBBULK_CancelRead (USB_BULK_HANDLE hDevice) ;
Parameter Description

hDevice Handle to the opened device.

Table 6.9: USBBULK_CancelRead() parameter list

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

152 CHAPTER 6 Bulk Host API V2

6.1.3.5 USBBULK_ReadTimed()

Description

Reads data from target device running emUSB-Bulk within a given timeout.

Prototype

USBBULK_API int WINAPI USBBULK_Read (USB_BULK_HANDLE hDevice,
void * pBuffer,
int NumBytes
unsigned ms) ;

Parameter Description
hDevice Handle to the opened device.
pBuffer Pointer to a buffer that shall store the data.
NumBytes Number of bytes to be read.
ms Timeout in milliseconds.

Table 6.10: USBBULK_ReadTimed() parameter list

Return value

'== NumBytes': All bytes have successfully been read.

'< NumBytes': A time-out occurred during read, when the emUSB driver is in normal
mode, otherwise the emUSB driver returns the number of bytes that have been read
from device.

‘<= -1": Cannot read from the device.

Additional information

USBBULK_ReadTimed () sends the read request to the USB-Bulk driver. Because the
driver can only read a certain amount of bytes from the device - the default value is
64 Kbytes; the driver will abort the transaction.

Therefore if NumBytes exceeds this limit, USBBULK_ReadTimed () will read the desired
NumBytes in chunks of the maximum read size the driver can handle.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

153

6.1.3.6 USBBULK_WriteTimed()

Description

Writes data to the device within a given timeout.

Prototype

USBBULK_API int WINAPI USBBULK Write (USB_BULK_HANDLE hDevice,
const void * pBuffer,
int NumBytes
unsigned ms) ;

Parameter Description
hDevice Handle to the opened device.
pBuffer Pointer to a buffer that contains the data.
NumBytes Number of bytes to be written.
ms Timeout in milliseconds.

Table 6.11: USBBULK_WriteTimed() parameter list

Return value

'== NumBytes': All bytes have successfully been written.
'< NumBytes': A time-out occurred during write.
'< 0': A write error occurred.

Additional information

USBBULK_WriteTimed () sends the write request to the emUSB driver. Because the
driver can only write a certain amount of bytes to device - the default value is 64
Kbytes; the driver will abort the transaction.

Therefore if NumBytes exceeds this limit, USBBULK writeTimed () will write the
desired NumBytes in chunks of the maximum write size the driver can handle.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

154 CHAPTER 6 Bulk Host API V2

6.1.3.7 USBBULK_FlushRx()

Description

This function removes all data which was cached by the API from the internal receive

buffer.

Prototype

USBBULK_API int WINAPI USBBULK_FlushRx (USB_BULK_HANDLE hDevice) ;
Parameter Description

hDevice Handle to the opened device.

Table 6.12: USBBULK_FlushRx() parameter list

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

155

6.1.4 USB-Bulk Control functions

6.1.4.1 USBBULK_GetConfigDescriptor()
Description

Gets the received target USB configuration descriptor of a specified device running
emUSB-Bulk.
Prototype

USBBULK_APTI int WINAPI USBBULK_GetConfigDescriptor (USB_BULK_HANDLE hDevice,
void* pBuffer, int Size);

Parameter Description
hDevice Handle to an opened device.
pBuffer Pointer to the buffer that shall store the descriptor.
Size Size of the buffer, given in bytes.

Table 6.13: USBBULK_GetConfigDescriptor() parameter list

Return value

== 0 - Operation failed. Either an invalid handle was used or the buffer that shall
store the config descriptor is too small.
=0 - The operation was successful.

If the function succeeds, the buffer pointed by pBuffer contains the USB target
device configuration descriptor.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

156 CHAPTER 6 Bulk Host API V2

6.1.4.2 USBBULK_GetMode()

Description

Returns the current mode of the device.

Prototype

USBBULK_API unsigned WINAPI USBBULK_GetMode (USB_BULK_HANDLE hDevice) ;
Parameter Description

hDevice Handle to an opened device.

Table 6.14: USBBULK_GetMode() parameter list

Return value

USBBULK_MODE_BIT_ALLOW_SHORT_READ - Short read mode is enabled.
USBBULK_MODE_BIT_ALLOW_SHORT_WRITE - Short write mode is enabled.
0 - Normal mode is set.

Additional information
A combination of both modes is possible.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

157

6.1.4.3 USBBULK_GetReadMaxTransferSize()

Description

Retrieves the maximum transfer size of a read transaction the driver can receive
from an application for a specified device running emUSB-Bulk.

Prototype
USBBULK_API unsigned WINAPI USBBULK_GetReadMaxTransferSize (USB_BULK_HANDLE
hDevice) ;
Parameter Description
hDevice Handle to an opened device.

Table 6.15: USBBULK_GetReadMaxTransferSize() parameter list

Return value

== 0 - Operation failed. Either an invalid handle was used or
the transfer size cannot be read.
=0 - The operation was successful.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

158 CHAPTER 6 Bulk Host API V2

6.1.4.4 USBBULK_GetWriteMaxTransferSize()

Description

Retrieves the maximum transfer size of a write transaction the driver can handle
from an application for a specified device running emUSB-Bulk.

Prototype
USBBULK_APTI unsigned WINAPI USBBULK_GetWriteMaxTransferSize (USB_BULK_HANDLE
hDevice) ;
Parameter Description
hDevice Handle to an opened device.

Table 6.16: USBBULK_GetWriteMaxTransferSize() parameter list

Return value

== 0 - Operation failed. Either an invalid handle was used or
the transfer size cannot be read.
I= 0 - The operation was successful.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

159

6.1.4.5 USBBULK_ResetPipe()

Description

Resets the pipes that are opened to the device.
It also flushes any data the USB bulk driver would cache.

Prototype

USBBULK_API int WINAPI USBBULK_ResetPipe (USB_BULK_HANDLE hDevice) ;
Parameter Description

hDevice Handle to an opened device.

Table 6.17: USBBULK_ResetPipe() parameter list

Return value

== 0 - Operation failed. Either an invalid handle was used or
the pipes cannot be flushed.
=0 - The operation was successful.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

160 CHAPTER 6 Bulk Host API V2

6.1.4.6 USBBULK_ResetDevice()

Description

Resets the device via a USB reset.
This can be used when the device does not work properly and may be reactivated via
USB reset. This will force a re-enumeration of the device.

Prototype

USBBULK_API int WINAPI USBBULK_ResetDevice (USB_BULK_HANDLE hDevice) ;
Parameter Description

hDevice Handle to an opened device.

Table 6.18: USBBULK_ResetDevice() parameter list

Return value

== 0 - Operation failed. Either an invalid handle was used or
the pipes cannot be flushed.

I= 0 - The operation was successful.

Additional information

After the device has been reseted it is necessary to re-open the device as the current
handle will become invalid.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

161

6.1.4.7 USBBULK_SetMode()
Description

Sets the read and write mode operation mode of the driver for a specified device run-
ning emUSB-Bulk.

Prototype

USBBULK_API unsigned WINAPI USBBULK_SetMode (USB_BULK_HANDLE hDevice,
unsigned Mode) ;

Parameter Description

hDevice Handle to an opened device.

Read and write mode for the USB-Bulk driver.

This is a combination of the following flags, combined by binary or:
USBBULK_MODE_BIT_ALLOW_SHORT_READ

USBBULK_MODE_BIT ALLOW_SHORT_WRITE

Table 6.19: USBBULK_SetMode() parameter list

Mode

Return value

If the function succeeds, the return value is nonzero. The read and write mode for
the driver has been successfully set.
If the function fails, the return value is zero.

Additional information

USBBULK_MODE_BIT_ALLOW_SHORT_READ allows short read transfers. Short transfers
are transfers of less bytes than requested. If this bit is specified, the read function
USBBULK_Read () returns as soon as data is available, even if it is just a single byte.
USBBULK_MODE_BIT_ALLOW_SHORT_WRITE allows short write transfers.
USBBULK_Write () returns after writing the minimal amount of data (either NumBytes
or the maximal write transfer size, which can be read by using the function
USBBULK_GetWriteMaxTransferSize()).

Example

static void _TestMode (unsigned DeviceId) {
unsigned Mode;
char * pText;

Mode = USBBULK_GetMode (DevicelId) ;
if (Mode & USBBULK_MODE_BIT ALLOW_SHORT_READ) {

pText = "USE_SHORT_MODE";
} else {
pText = "USE_NORMAL_MODE";

}

printf ("USB-Bulk driver is in %s for device %d\n", pText, DeviceId);
printf ("Set mode to USBBULK_MODE_BIT ALLOW_SHORT READ\n");
USBBULK_SetMode (DeviceId, USBBULK_MODE_BIT_ALLOW_SHORT_READ) ;

Mode = USBBULK_GetModeEx (DeviceId) ;

if (Mode & USBBULK_MODE_BIT ALLOW_SHORT_READ) {

pText = "USE_SHORT_MODE";
} else {
pText = "USE_NORMAL_MODE";

}

printf ("USB-Bulk driver is now in %s for device %d\n", pText, DevicelId);

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

162

6.1.4.8 USBBULK_SetReadTimeout()

Description

CHAPTER 6 Bulk Host API V2

Setups the default read timeout for an opened device.

Prototype

USBBULK_API void WINAPI USBBULK_SetReadTimeout (USB_BULK_HANDLE hDevice,

int Timeout) ;

Parameter Description
hDevice Handle to the opened device.
Timeout Timeout in milliseconds.

Table 6.20: USBBULK_SetReadTimeout() parameter list

UMO09001 User & Reference Guide for emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

6.1.4.9 USBBULK_SetWriteTimeout()

Description

163

Sets a default write time-out for a read operation.

Prototype

USBBULK_API void WINAPI USBBULK_SetWriteTimeout (USB_BULK_HANDLE hDevice,

int Timeout) ;

Parameter Description
hDevice Handle to the opened device.
Timeout Timeout in milliseconds.

Table 6.21: USBBULK_SeWritetTimeout() parameter list

UMO09001 User & Reference Guide for emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

164 CHAPTER 6 Bulk Host API V2

6.1.4.10 USBBULK_GetEnumTickCount()

Description

Returns the time when the USB device has been enumerated.

Prototype

USBBULK_API unsigned WINAPI USBBULK_SetMode (USB_BULK_HANDLE hDevice,
unsigned Mode) ;

Parameter Description

hDevice Handle to an opened device.
Table 6.22: USBBULK_GetEnumTickCount() parameter list

Return value

The time when the USB device has been enumerated by the driver given in Windows
timer ticks (normally 1 ms. ticks).

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

165

6.1.4.11 USBBULK_GetReadMaxTransferSizeDown()

Description

Returns the max transfer size the driver will read data from the device. In normal
cases the max transfer size will be 2048 bytes. As this is a multiple of a max packet
size, it is necessary that the device does not send a NULL-packet in this case. The
Windows USB stack will stop reading data from the USB Bus as soon as it read the
requested bytes.

Prototype
USBBULK_API U32 WINAPI USBBULK_GetReadMaxTransferSizeDown (USB_BULK_HANDLE
hDevice) ;
Parameter Description
hDevice Handle to an opened device.

Table 6.23: USBBULK_GetReadMaxTransferSizeDown() parameter list

Return value

I= 0 - Max transfer size the driver will read from device.
== - The transfer size cannot be read.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

166

6.1.4.12 USBBULK_GetWriteMaxTransferSizeDown()

CHAPTER 6

Bulk Host API V2

Description
Returns the max transfer size the driver will write data to the device.
Prototype
USBBULK_API U32 WINAPI USBBULK_GetWriteMaxTransferSizeDown (USB_BULK_HANDLE
hDevice) ;
Parameter Description
hDevice Handle to an opened device.

Table 6.24: USBBULK_GetWriteMaxtransferSizeDown() parameter list

Return value

== 0 - Operation failed. Either an invalid handle was used or

the transfer size cannot be read.
I= 0 - The operation was successful.

UMO09001 User & Reference Guide for emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

167

6.1.4.13 USBBULK_SetReadMaxTransferSizeDown()
Description

Sets the number of bytes the driver will write down to the device at once.

Prototype

USBBULK_APT unsigned WINAPI USBBULK_SetReadMaxTransferSizeDown (
USB_BULK_HANDLE hbDevice,

U32 TransferSize);

Parameter Description

hDevice Handle to an opened device.

TransferSize | The number of bytes the driver will set as maximum.
Table 6.25: USBBULK_SetReadMaxTransferSizeDown() parameter list

Return value

== 0 - Operation failed. Either an invalid handle was used or
the mode cannot be read.
I= 0 - The operation was successful.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

168 CHAPTER 6 Bulk Host API V2

6.1.4.14 USBBULK_SetWriteMaxTransferSizeDown()
Description
Sets the number of bytes the driver will write down to the device at once.

Prototype

USBBULK_API unsigned WINAPI USBBULK_SetWriteMaxTransferSizeDown (
USB_BULK_HANDLE hDevice,

U32 TransferSize);

Parameter Description

hDevice Handle to an opened device.

TransferSize | The number of bytes the driver will set as maximum.
Table 6.26: USBBULK_SetWriteMaxTransferSizeDown() parameter list

Return value

= 0 - The transfer size cannot be read.
= 0 - Max transfer size the driver will read from device.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

169

6.1.4.15 USBBULK_GetSN()

Description

Retrieves the USB serial number as a string which was sent by the device during the
enumeration.
Prototype

USBBULK_API unsigned WINAPI USBBULK_GetSN (USB_BULK_HANDLE hDevice,
U8 * pBuffer, unsigned NumBytes) ;

Parameter Description
hDevice Handle to an opened device.
pBuffer Pointer to a buffer which shall store the serial number of the device.
NumBytes Size of the buffer given in bytes.

Table 6.27: USBBULK_GetSN() parameter list

Return value

== 0 - Operation failed. Either an invalid handle was used or
the serial number cannot be read.
=0 - The operation was successful.

If the function succeeds, the return value is nonzero and the buffer pointed by

pBuffer contains the serial number of the device running emUSB-Bulk.
If the function fails, the return value is zero.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

170 CHAPTER 6 Bulk Host API V2

6.1.4.16 USBBULK_GetDevinfo()

Description

Retrieves information about an opened USBBULK device.

Prototype

USBBULK_API void WINAPI USBBULK_GetDevInfo (USB_BULK_HANDLE hDevice,
USBBULK_DEV_INFO * pDevInfo);

Parameter Description
hDevice Handle to the opened device.
pDevInfo Pointer to a device info structure.

Table 6.28: USBBULK_GetDevInfo() parameter list

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

171

6.1.4.17 USBBULK_GetProductName()
Description

Retrieves the product name of an opened USBBULK device.

Prototype

USBBULK_API void WINAPI USBBULK_GetProductName (USB_BULK_HANDLE hDevice,
char * sProductName,

unsigned BufferSize);

Parameter Description

hDevice Handle to the opened device.
sProductName | Pointer to a buffer where the product name shall be saved.

BufferSize Size of the product name buffer.
Table 6.29: USBBULK_GetProductName() parameter list

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

172 CHAPTER 6 Bulk Host API V2

6.1.4.18 USBBULK_GetVendorName()
Description

Retrieves the vendor name of an opened USBBULK device.

Prototype

USBBULK_API void WINAPI USBBULK_GetProductName (USB_BULK_HANDLE hDevice,
char * sVendorName,

unsigned BufferSize);

Parameter Description
hDevice Handle to the opened device.
sVendorName Pointer to a buffer where the vendor name shall be saved.
BufferSize Size of the vendor name buffer.

Table 6.30: USBBULK_GetVendorName() parameter list

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

173

6.1.5 USB-Bulk general GET functions

6.1.5.1 USBBULK_GetDriverCompileDate()
Description

Gets the compile date and time of the emUSB bulk communication driver.

Prototype

USBBULK_API unsigned WINAPI USBBULK_GetDriverCompileDate(char * s,
unsigned Size);

Parameter Description
s Pointer to a buffer to store the compile date string.
Size Size, in bytes, of the buffer pointed to by s.

Table 6.31: USBBULK_GetDriverCompileDate() parameter list

Return value

== 0 - Operation failed. The buffer that shall store the string is too small.
I= 0 - The operation was successful.

If the function succeeds, the return value is nonzero and the buffer pointed by s con-
tains the compile date and time of the emUSB driver in the standard format:
mm dd yyyy hh:mm:ss

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

174 CHAPTER 6 Bulk Host API V2

6.1.5.2 USBBULK_GetDriverVersion()

Description

Returns the driver version of the driver, if the driver is loaded. Otherwise the function
will return 0, as it can only determine the driver version when the driver is loaded.

Prototype
USBBULK_APTI unsigned WINAPI USBBULK_GetDriverVersion (void) ;

Return value

If the function succeeds, the return value is the driver version of the driver as deci-
mal value:

<Major Version><Minor Version><Subversion>. 24201 (Mmmrr) means 2.42a
If the function fails, the return value is zero; the version could not be retrieved.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

175

6.1.5.3 USBBULK_GetVersion()
Description
Returns the USBBULK API version.
Prototype

USBBULK_APT unsigned WINAPI USBBULK_GetVersion (void) ;

Return value

The version of the USBBULK API in the following format:
<Major Version><Minor Version><Subversion>. 24201 (Mmmrr) means 2.42a

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

176 CHAPTER 6 Bulk Host API V2

6.1.5.4 USBBULK_GetNumAvailableDevices()
Description

Returns the number of connected USB-Bulk devices.

Prototype
USBBULK_API unsigned WINAPI USBBULK_GetNumAvailableDevices (U32 * pMask) ;

Parameter Description

Pointer to a U32 variable to receive the connected device mask. This
parameter can be NULL.
Table 6.32: USBBULK_GetNumAvailableDevices() parameter list

pMask

Return value

The return value is the number of available devices running emUSB-Bulk. For each
emUSB device that is connected, a bit in pMask is set.

For example if device 0 and device 2 are connected to the host, the value pMask
points to will be 0x00000005.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

177

6.1.5.5 USBBULK_ GetUSBId()

Description
Returns the set Product and Vendor ID mask that is used with the USBBULK API.

Prototype

USBBULK_API void WINAPI USBBULK_GetDevInfo (USB_BULK_HANDLE hDevice,
USBBULK_DEV_INFO * pDevInfo);

Parameter Description
pVendorId Pointer to a U16 variable that will store the Vendor 1ID.

pProductId Pointer to a U16 variable that will store the Product ID.
Table 6.33: USBBULK_GetUSBId() parameter list

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

178

CHAPTER 6 Bulk Host API V2

6.1.6 Data structures

6.1.6.1 USBBULK_DEV_INFO

Description

A structure which can hold the relavant information about a device.

Prototype

typedef struct _USBBULK_DEV_INFO {
Ul6 VendorId;
Ul6 ProductId;
char acSN[256];
char acDevName[256];
} USBBULK_DEV_INFO;

Member Description
VendorId An U16 which holds the device Vendor ID.
ProductId An U16 which holds the device Product ID.
acSN Array of chars which holds the serial number of the device.
acDevName Array of chars which holds the device name.

Table 6.34: USBBULK_DEV_INFO elements

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

179

Chapter 7

Mass Storage Device Class
(MSD)

This chapter gives a general overview of the MSD class and describes how to get the
MSD component running on the target.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

180 CHAPTER 7 Mass Storage Device Class (MSD)

7.1 Overview

The Mass Storage Device (MSD) is a USB class protocol defined by USB Implementers
Forum. The class itself is used to get access to one storage medium or multiple stor-
age mediums.

As the USB mass storage device class is well standardized, every major OS such as
Microsoft Windows operating systems (Window ME, Windows 2000, Windows XP, Win-
dows 2003 and Windows Vista), Apple Mac OS X, Linux and many more supports it.
So therefore an installation of a custom-host USB driver is normally not necessary.

emUSB-MSD comes as a whole packet and contains the following:

Generic USB handling
An optional target USB driver

e MSD device class implementation, including support for direct disk and CD-ROM
mode (CD-ROM access is separate component)

e Several storage drivers for handling different devices

e Example applications with different configuration storage driver

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

181

7.2 Configuration

7.2.1 Initial configuration

To get emUSB-MSD up and running as well as doing an initial test, the configuration
as it is delivered should not be modified.

7.2.2 Final configuration

The configuration must only be modified, when emUSB should be used in your final
product. Refer to section Configuration on page 42 to get detailed information about
the generic information functions which has to be adapted.

In order to comply with Mass Storage Device Bootability spec, the function
USB_GetSerialNumber () shall return a string with at least 12 characters, where as
each character shall represent a hexadecimal character.

7.2.3 Class specific configuration functions

Beside the generic emUSB-MSD configuration functions, three additional functions
can be adapted before the emUSB MSD component should be used in a final product.
Example implementations of these functions are supplied in the MSD example appli-
cation MSD_Fs_start.c, located in the Application directory of emUSB.

Function Description
emUSB-MSD configuration functions
USB_MSD_CGetVendorName () Returns the manufacturer name.
USB_MSD_GetProductName () Returns the MSD product name.
USB_MSD_CGetProductVer () Returns the product version of the MSD device.
USB_MSD_GetSerialNo () Returns the serial number of the MSD device.

Table 7.1: List of class specific configuration functions

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

182 CHAPTER 7 Mass Storage Device Class (MSD)

7.2.3.1 USB_MSD_GetVendorName()

Description
Should return the vendor name of the mass storage device.
Prototype
const char * USB_MSD GetVendorName (U8 Lun) ;
Parameter Description
Lun Specifies the logical unit number those vendor name shall be
returned.

Table 7.2: USB_MSD_GetVendorName() parameter list

Example

const char * USB_MSD GetVendorName (U8 Lun) {
return "Vendor";

}
Additional information

The manufacturer name is used during the enumeration phase. Together with the
product name and the serial number should it give a detailed information to the user
about which device is connected to the device. The string should be no longer than 8
bytes.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

183

7.2.3.2 USB_MSD_GetProductName()

Description

Should return the product name of the mass storage device.

Prototype
const char * USB_MSD_ GetProductName (U8 Lun) ;
Parameter Description
Lun Specifies the logical unit number those product name shall be
returned.

Table 7.3: USB_MSD_GetProductName() parameter list

Example

const char * USB_GetProductName (U8 Lun)

return "MSD device";

}

Additional information

The product name string should be no longer than 16 byte.

UMO09001 User & Reference Guide for emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

184 CHAPTER 7 Mass Storage Device Class (MSD)

7.2.3.3 USB_MSD_GetProductVer()

Description
Should return the product version number of the mass storage device.
Prototype
const char * USB_MSD GetProductVer (U8 Lun) ;
Parameter Description
Lun Specifies the logical unit number those version shall be returned.

Table 7.4: USB_MSD_GetProductVer() parameter list

Example

const char * USB_MSD GetProductVer (U8 Lun) {
return "1.00";

}

Additional information

The product version string should be no longer than 8 bytes.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

7.2.3.4 USB_MSD_GetSerialNo()

Description

185

Should return the product serial number of the mass storage device.

Prototype
const char * USB_MSD GetSerialNo (U8 Lun) ;
Parameter Description
Lun Specifies the logical unit number those serial number shall be
returned.

Table 7.5: USB_MSD_GetSerialNo() parameter list

Example

const char * USB_MSD_GetSerialNo (U8 Lun)

return "1234657890";

}

Additional information

The product version string should be no longer than 10 bytes.

UMO09001 User & Reference Guide for emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

186 CHAPTER 7 Mass Storage Device Class (MSD)

7.2.4 Running the example application

The directory Application contains example applications that can be used with
emUSB and the MSD component. To test the emUSB-MSD component, build and
download the application of choice into the target. Remove the USB connection and
reconnect the target to the host. The target will enumerate and can be accessed via
a file browser.

7.2.41 MSD_Start_StorageRAM.c in detail

The main part of the example application USB_MSD_Start_StorageRAM.c is imple-
mented in a single task called MainTask ().

/* MainTask() - excerpt from USB _MSD Start StorageRAM.c */

void MainTask (void) ;
volid MainTask (void) {
USB Init();
_AddMSD () ;
USB Start();
while (1) {
while ((USB_GetState() & (USB_STAT CONFIGURED | USB_STAT SUSPENDED))
I= USB STAT CONFIGURED) {
BSP ToggleLED(0) ;
USB_0S Delay(50);
}
BSP_SetLED(O);
USB_MSD Task () ;

}

The first step is to initialize the USB core stack using USB_Init(). The function
_AddmMsD () configures all required endpoints and assigns the used storage medium to
the MSD component.

/* _AddMSD() - excerpt from MSD Start StorageRAM.c */

static void AddMSD(void) {
static U8 abOutBuffer [USB MAX PACKET SIZE];

USB_MSD_INIT DATA InitData;
USB_MSD_INST DATA InstData;
InitData.EPIn = USB AddEP (1, USB_TRANSFER TYPE BULK,

USB_MAX PACKET SIZE, NULL, 0);

InitData.EPOut = USB_AddEP(O, USB TRANSFER TYPE BULK, USB MAX PACKET SIZE,
_abOutBuffer, USB MAX PACKET SIZE);

USB _MSD Add(&InitData);

!/

// Add logical unit O0: RAM drive

//

memset (&InstData, O, sizeof (InstData)) ;

InstData.pAPI = &USB MSD StorageRAM;

InstData.DriverData.pStart (void*)MSD RAM ADDR;
InstData.DriverData.NumSectors MSD RAM NUM SECTORS;
InstData.DriverData.SectorSize = MSD RAM SECTOR SIZE;
USB MSD AddUnit (&InstData);

}
The example application uses a RAM disk as storage medium.

The example RAM disk has a size of 23 Kbytes (46 sectors with a sector size of 512
bytes). You can increase the size of the RAM disk by modifying the macros
MSD_RAM_NUM_SECTORS and MSD_RAM_SECTOR_SIZE, but the size must be at least 23
Kbytes otherwise a Windows host cannot format the disk.

/* AddMSD() - excerpt from MSD Start StorageRAM.c */

#define MSD RAM NUM SECTORS 46
#define MSD RAM SECTOR SIZE 512

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

UMO09001 User & Reference Guide for emUSB

7.3 Target API

187

Function

Description

API functi

ons

USB_MSD_Add ()

Adds an MSD-class interface to the
USB stack.

USB_MSD_AddUnit ()

Adds a mass storage device to the
emUSB-MSD.

USB_MSD_AddCDRom ()

Adds a CD-ROM device to the emUSB-
MSD.

USB_MSD_SetPreventAllowRemovalHook ()

Sets a callback function to prevent/
allow removal of storage medium.

USB_MSD_SetReadWriteHook ()

Sets a callback function which is called
with every read or write access to the
storage medium.

USB_MSD_Task()

Handles the MSD-specific protocol.

Extended API functions

USB_MSD_Connect ()

Connects the storage medium to the
MSD.

USB_MSD_Disconnect ()

Disconnects the storage medium from
the MSD.

USB_MSD_RequestDisconnect ()

Sets the DisconnectRequest flag.

USB_MSD_UpdateWriteProtect ()

Updates the IsWriteProtected flag for a
storage medium.

USB_MSD_WaitForDisconnection|()

Waits for disconnection while time out
is not reached.

Data structures

USB_MSD_INIT_DATA

emUSB-MSD initialization structure
that is needed when adding an MSD
interface.

USB_MSD_INFO

emUSB-MSD storage information.

USB_MSD_INST_DATA

Structure that is used when adding a
device to emUSB-MSD.

PREVENT_ALLOW_REMOVAL_HOOK

Callback invoked when the storage
medium is removed.

READ_WRITE_HOOK

Callback invoked when accessing the
storage medium.

USB_MSD_INST_DATA_DRIVER

Structure that is passed to the driver.

USB_MSD_STORAGE_API

Structure that contains callbacks to
the storage driver.

Table 7.6: List of emUSB MSD interface functions and

data structures

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

188 CHAPTER 7 Mass Storage Device Class (MSD)

7.3.1 API functions

7.3.1.1 USB_MSD_Add()

Description
Adds an MSD-class interface to the USB stack.

Prototype

void USB_MSD_Add (const USB_MSD_INIT DATA * pInitData);
Parameter Description

pInitData Pointer to a usB_MSD_INIT_DATA structure.

Table 7.7: USB_MSD_Add() parameter list

Additional information

After the initialization of general emUSB, this is the first function that needs to be
called when an MSD interface is used with emUSB. The structure USB_MSD_INIT_DATA
has to be initialized before usB_MsD_add () is called. Refer to USB_MSD_INIT_DATA
on page 199 for more information.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

189

7.3.1.2 USB_MSD_AddUnit()

Description
Adds a mass storage device to emUSB-MSD.
Prototype
void USB_MSD_AddUnit (const USB_MSD_INST_DATA * pInstData);
Parameter Description
Pointer to a use_mMsD_INST_DATA structure that is used to add the
pInstData desired drive to the USB-MSD stack.

Table 7.8: USB_MSD_AddUnit() parameter list

Additional information

It is necessary to call this function right after use_MsD_add () was called.

This function will then add an R/W storage device such as a hard drive, MMC/SD
cards or NAND flash etc., to emUSB-MSD, which then will be used to exchange data
with the host. The structure usB_MSD_INST_DATA has to be initialized before
USB_MSD_Addunit () is called. Refer to USB_MSD_ INST_DATA on page 201 for more
information.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

190 CHAPTER 7 Mass Storage Device Class (MSD)

7.3.1.3 USB_MSD_AddCDRom()

Description
Adds a CD-ROM device to emUSB-MSD.

Prototype
void USB_MSD_AddCDRom (const USB_MSD_INST_DATA * pInstData) ;
Parameter Description
Pointer to a usB_MSD_INST_DATA structure that is used to add the
pInstData . .
desired drive to the USB-MSD stack.

Table 7.9: USB_MSD_AddCDRom() parameter list

Additional information

Similar to UusB_MSD_Addunit (), this function should be called after use_MSD_Add()
was called. The structure uUsB_MSD_INST_DATA has to be initialized before
USB_MSD_Addunit () is called. Refer to USB_MSD_INST_DATA on page 201 for more
information.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

191

7.3.1.4 USB_MSD_SetPreventAllowRemovalHook()

Description
Sets a callback function to prevent/allow removal of storage medium.

Prototype

void USB_MSD_SetPreventAllowRemovalHook (U8 Lun,
PREVENT_ALLOW_REMOVAL_HOOK * pfOnPreventAllowRemoval)

Parameter Description

Pointer to the callback function
PREVENT_ALLOW_REMOVAL_HOOK. For detailed information
about the function pointer, refer to
PREVENT_ALLOW_REMOVAL_HOOK on page 202.

Table 7.10: USB_MSD_SetPreventAllowRemovalHook() parameter list

pfOnPreventAllowRemoval

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

192 CHAPTER 7 Mass Storage Device Class (MSD)

7.3.1.5 USB_MSD_SetReadWriteHook()

Description

Sets a callback function which gives information about the read and write operation
to the storage medium.

Prototype
void USB_MSD_SetReadWriteHook (U8 Lun, READ_WRITE_HOOK * pfOnReadWrite)
Parameter Description
Pointer to the callback function READ_WRITE_HOOK. For
pfOnReadWrite detailed information about the function pointer, refer to
READ_WRITE_HOOK on page 203.

Table 7.11: USB_MSD_SetReadWriteHook() parameter list

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

193

7.3.1.6 USB_MSD_Task()

Description
Task that handles the MSD-specific protocol.

Prototype
void USB_MSD_Task (void) ;

Additional information

After the USB device has been successfully enumerated and configured, the
USB_MSD_Task () should be called. When the device is detached or is suspended,
USB_MSD_Task () will return.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

194 CHAPTER 7 Mass Storage Device Class (MSD)

7.3.2 Extended API functions
7.3.2.1 USB_MSD_Connect()

Description

Connects the storage medium to the MSD.

Prototype
void USB_MSD_Connect (U8 Lun) ;

Parameter Description

0-based index for the unit number.
Using only one storage medium, this parameter is 0.
Table 7.12: USB_MSD_Connect() parameter list

Lun

Additional information

The storage medium is initially always connected to the MSD component. This func-
tion is normally used, when the storage medium is disconnected in order to do some
internal file system operation.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

195

7.3.2.2 USB_MSD_Disconnect()
Description
Disconnects the storage medium from the MSD.

Prototype

void USB_MSD_Disconnect (U8 Lun) ;

Parameter Description

0-based index for the unit number.
Using only one storage medium, this parameter is 0.
Table 7.13: USB_MSD_Disconnect() parameter list

Lun

Additional information

This function will force the storage medium to be disconnected. The host will be
informed that the medium is not present. In order to reconnect back the device to
the host, the function UsSB_MSD_Connect () shall be used.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

196 CHAPTER 7 Mass Storage Device Class (MSD)

7.3.2.3 USB_MSD_RequestDisconnect()

Description
Sets the DisconnectRequest flag.

Prototype

void USB_MSD_RequestDisconnect (U8 Lun) ;

Parameter Description

0-based index for the unit number.
Using only one storage medium, this parameter is 0.
Table 7.14: USB_MSD_RequestDisconnect() parameter list

Lun

Additional information

This function sets the disconnect flag for the storage medium. As soon as the next
MSD command is sent to the device, the host will be informed that the device is cur-
rently not available. To reconnect the storage medium, USB_MSD_Connect () shall be
called.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

197

7.3.2.4 USB_MSD_UpdateWriteProtect()

Description

Updates the IsWriteProtected flag for a storage medium.

Prototype
void USB_MSD_UpdateWriteProtect (U8 Lun, U8 IsWriteProtected);
Parameter Description
0-based index for the unit number.
Lun K . . .
Using only one storage medium, this parameter is 0.
. 1 - Medium is write-protected.
IsWriteProtected

0 - Medium is not write-protected.
Table 7.15: USB_MSD_UpdateWriteProtect() parameter list

Additional information

This functions allows to update the write-protect status of the storage-medium.
Please make sure that this function is called when the LUN is disconnected from the
HOST, otherwise the WriteProtected flag is normally not recognized.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

198 CHAPTER 7 Mass Storage Device Class (MSD)

7.3.2.5 USB_MSD_WaitForDisconnection()
Description
Waits for disconnection while time out is not reached.

Prototype

int USB_MSD _WaitForDisconnection (U8 Lun, U32 TimeOut) ;

Parameter Description
0-based index for the unit number.
Using only one storage medium, this parameter is 0.

TimeOut Time-out given in ms (timer ticks).
Table 7.16: USB_MSD_WaitForDisconnection() parameter list

Lun

Return value

0 - Error: Time-out reached. Storage medium is not disconnected.
1 - Success: Storage medium is disconnected.

Additional information

The stack disconnects the storage medium next time when the HOST requests the
status of the storage medium. Win2k does not periodically check the status of a USB
MSD. Therefore, the time out is required to leave the loop. The return value can be
used to decide if the disconnection should be forced. In this case,
USB_MSD_Disconnect () shall be called.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

199

7.3.3 Data structures
7.3.3.1 USB_MSD_INIT _DATA

Description

emUSB-MSD initialization structure that is required when adding an MSD interface.

Prototype

typedef struct {
U8 EPIn;
U8 EPOut;
U8 InterfaceNum;
} USB_MSD_INIT_DATA;

Member Description
EPIn Endpoint for sending data to the host.
EPOut Endpoint for receiving data from the host.

Interface number. This member is normally internally used, so therefore
the value shall be set to 0.
Table 7.17: USB_MSD_INIT_DATA elements

InterfaceNum

Additional Information

This structure holds the endpoints that should be used with the MSD interface. Refer
to USB_AddEP() on page 57 for more information about how to add an endpoint.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

200 CHAPTER 7 Mass Storage Device Class (MSD)

7.3.3.2 USB_MSD_INFO

Description
emUSB-MSD storage interface.

Prototype

typedef struct {
U32 NumSectors;
Ul6 SectorSize;
} USB_MSD_INFO;

Member Description
NumSectors Number of available sectors.
SectorSize Size of one sector.

Table 7.18: USB_MSD_INFO elements

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

201

7.3.3.3 USB_MSD_INST_DATA

Description
Structure that is used when adding a device to emUSB-MSD.

Prototype

typedef struct {
const USB_MSD_STORAGE_API * pAPI;

USB_MSD_INST DATA_DRIVER DriverData;

U8 DeviceType;

U8 IsPresent;
USB_MSD_HANDLE_CMD * pfHandleCmd;

U8 IsWriteProtected;

} USB_MSD_INST_DATA;

Member Description
PAPI Pointer to a structure that holds the storage device driver API.
Driver data that are passed to the storage driver. Refer to
DriverData USB_MSD_INST_DATA_DRIVER on page 204 for detailed infor-
mation about how to initialize this structure.
DeviceType Determines the type of the device.

Determines if the medium is storage is present. For non-
removable devices always 1.

Optional pointer to a callback function which handles SCSI
pfHandleCmd commands.

typedef U8 (USB_MSD_HANDLE_CMD) (U8 Lun) ;

Specifies whether the storage medium shall be write-pro-
tected.

Table 7.19: USB_MSD_INST_DATA elements

IsPresent

IsWriteProtected

Additional Information

All non-optional members of this structure need to be initialized correctly, except
Device Type because it is done by the functions useB MSD Addunit() Or
USB_MSD_AdACDROM () .

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

202 CHAPTER 7 Mass Storage Device Class (MSD)

7.3.3.4 PREVENT_ALLOW_REMOVAL_HOOK
Description
Callback function to prevent/allow removal of storage medium.

Prototype
typedef void (PREVENT_ALLOW_REMOVAIL_HOOK) (U8 PreventRemoval) ;

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

203

7.3.3.5 READ_WRITE_HOOK
Description
Callback function which is called with every read/write access to the storage medium.

Prototype

typedef void (READ_WRITE_HOOK) (U8 Lun,
U8 1IsRead,
U8 OnOff,
U32 StartLBA,
U32 NumBlocks) ;

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

204 CHAPTER 7 Mass Storage Device Class (MSD)

7.3.3.6 USB_MSD_INST_DATA_DRIVER

Description
USB-MSD initialization structure that is required when adding an MSD interface.
Prototype
typedef struct {
void * pStart;
U32 StartSector;
U32 NumSectors;
u32 SectorSize;
void * pSectorBuffer;

unsigned NumBytes4Buffer;
} USB_MSD_ INST DATA_ DRIVER;

Member Description
pStart A pointer defining the start address.
StartSector The start sector that is used for the driver.
NumSectors The available number of sectors available for the driver.
SectorSize The sector size that should be used by the driver.

Pointer to a application provided buffer to be used as tempo-
rary buffer for storing the sector data

NumBytes4Buffer Size of the application provided buffer.
Table 7.20: USB_MSD_INST_DATA_DRIVER

pSectorBuffer

Additional Information

This structure is passed to the storage driver. Therefore, the member of this struc-
ture can depend on the driver that is used.

For the storage driver that are shipped with this software the member of
USB_MSD_INST_DATA_DRIVER have the following

USB_MSD_StorageRAM:

Member Description
pStart A pointer defining the start address of the RAM disk.
StartSector This member is ignored.
NumSectors The available number of sectors available for the RAM disk.
SectorSize The sector size that should be used by the driver.

USB_MSD_StorageByName:

Member Description

Pointer to a string holding the name of the volumes that shall

pStart be used, for example "nand:" "mmc:1:"

StartSector Specifies the start sector.

NumSectors Number of sector that shall be used.

SectorSize This member is ignored.

pSectorBuffer Pointer to a application provided buffer to be used as tempo-

rary buffer for storing the sector data

Size of the application provided buffer. Please make sure that
the buffer can at least 3 sectors otherwise, pSectorBuffer and
NumBytes4Buffer NumBytes4Buffer are ignored and an internal sector buffer is
used. This sector-buffer is then allocated by using the FS-Stor-
age-Layer functions.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

7.3.3.7 USB_MSD_STORAGE_API

Description

Structure that contains callbacks to the storage driver.

Prototype

typedef struct {
void (*pfInit)

void (*pfGetInfo)

(U8 Lun,

205

const USB_MSD_INST_DATA_DRIVER * pDriverData) ;

(U8 Lun,
USB_MSD_INFO * pInfo);

U32 (*pfGetReadBuffer) (U8 Lun,

U32 SectorIndex,

void ** ppData,

U32 NumSectors) ;
char (*pfRead) (U8 Lun,

U32 SectorIndex,

void * pDhata,

U32 NumSector) ;
U332 (*pfGetWriteBuffer) (us Lun,

U32 SectorIndex,

void ** ppData,

U32 NumSectors) ;
char (*pfWrite) (U8 Lun,

U32 SectorIndex,

const void * pData,

U32 NumSectors) ;
char (*pfMediumIsPresent) (U8 Lun) ;
void (*pfDelInit) (U8 Lun) ;

} USB_MSD_STORAGE_APTI;

Member Description
pfInit Initializes the storage medium.
Retrieves storage medium information such as sector size
pfGetInfo .
and number of sectors available.
Prepares read function and returns a pointer to a buffer that
pfGetReadBuffer . .
is used by the storage driver.
pfRead Reads one or multiple sectors from the storage medium.
. Prepares write function and returns a pointer to a buffer
pfGetWriteBuffer . .
that is used by the storage driver.
pfWrite Writes one or more sectors to the storage medium.
pfMediumIsPresent Checks if medium is present.
pfDeInit Deinitializes the storage medium.

Table 7.21: List of callback functions of USB_MSD_STORAGE_API

Additional Information

USB_MSD_STORAGE_APT is used to retrieve information from the storage device driver
or access data that need to be read or written. Detailed information can be found in
Storage Driver on page 206.

UMO09001 User & Reference Guide for emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

206 CHAPTER 7 Mass Storage Device Class (MSD)

7.4 Storage Driver

This section describes the storage interface in detail.

7.4.1 General information

The storage interface is handled through an API-table, which contains all relevant
functions necessary for read/write operations and initialization. Its implementation
handles the details of how data is actually read from or written to memory.
Additionally, MSD knows two different media types:

e Direct media access, for example RAM-Disk, NAND flash, MMC/SD cards etc.
CD-ROM emulation.

7.4.1.1 Supported storage types

The supported storage types include:

e RAM, directly connected to the processor via the address bus.

e External flash memory, e.g. SD cards.

e Mechanical drives, for example CD-ROM. This is essentially an ATA/SCSI to USB
bridge.

7.4.1.2 Storage drivers supplied with this release

This release comes with the following drivers:

USB_MSD_StorageRAM: A RAM driver which should work with almost any device.
USB_MSD_StorageByIndex: A storage driver that uses the storage layer (logical
block layer) of emFile to access the device.

e USB_MSD_StorageByName: A storage driver that uses the storage layer (logical
block layer) of emFile to access the device.

7.4.2 Interface function list

As described above, access to a storage media is realized through an API-function
table (UsB_MSD_STORAGE_API). The storage functions are declared in
USB\MSD\USB_MSD.h. The structure is described in section Data structures on
page 199.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

207

7.4.3 USB_MSD_STORAGE_API in detail

7.4.3.1 (*pfinit)()
Description

Initializes the storage medium.

Prototype

void (*pfInit) (U8 Lun, const USB_MSD_INST DATA_DRIVER * pDriverData) ;
Parameter Description

Lun Logical unit number. Specifies for which drive the function is called.

Pointer to a UsSB_MSD_INST_DATA_DRIVER structure that contains all
. information that are necessary for the driver initialization. For
pbriverData detailed information about the UsB_MSD_INST_DATA_ DRIVER struc-
ture, refer to USB_MSD_INST_DATA_DRIVER on page 204.

Table 7.22: (*pfInit)() parameter list

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

208

CHAPTER 7 Mass Storage Device Class (MSD)

7.4.3.2 (*pfGetinfo)()

Description
Retrieves storage medium information such as sector size and number of sectors
available.
Prototype
void (*pfGetInfo) (U8 Lun, USB_MSD_INFO * pInfo);
Parameter Description
Lun Logical unit number. Specifies for which drive the function is called.
Inf Pointer to a usB_MsSD_INFO structure. For detailed information about
pInto the usB_mMsD_INFO structure, refer to USB_MSD_INFO on page 200.

Table 7.23: (*pfGetInfo)() parameter list

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

209

7.4.3.3 (*pfGetReadBuffer)()

Description
Prepares the read function and returns a pointer to a buffer that is used by the stor-

age driver.
Prototype
U32 (*pfGetReadBuffer) (U8 Lun, U32 SectorIndex,
void ** ppData, U32 NumSectors) ;
Parameter Description
Lun Logical unit number. Specifies for which drive the function is called.
SectorIndex Specifies the start sector for the read operation.
ppData Pointer to a pointer to store the read buffer address of the driver.
NumSectors Number of sectors to read.

Table 7.24: (*pfGetReadBuffer)() parameter list

Return value

Number of sectors that can be read at once by the driver.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

210 CHAPTER 7 Mass Storage Device Class (MSD)

7.4.3.4 (*pfRead)()

Description

Reads one or multiple sectors from the storage medium.

Prototype

char (*pfRead) (U8 Lun, U32 SectorIndex, void * pData, U32 NumSector) ;
Parameter Description

Lun Logical unit number. Specifies for which drive the function is called.

SectorIndex Specifies the start sector from where the read operation is started.

pData Pointer to buffer to store the read data.

NumSectors Number of sectors to read.

Table 7.25: (*pfRead)() parameter list

Return value

0: Success

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

211

7.4.3.5 (*pfGetWriteBuffer)()

Description
Prepares the write function and returns a pointer to a buffer that is used by the stor-

age driver.
Prototype
U32 (*pfGetWriteBuffer) (U8 Lun, U32 SectorIndex,
void ** ppData, U32 NumSectors) ;
Parameter Description
Lun Logical unit number. Specifies for which drive the function is called.
SectorIndex Specifies the start sector for the write operation.
ppData Pointer to a pointer to store the write buffer address of the driver.
NumSectors Number of sectors to write.

Table 7.26: (*pfGetWriteBuffer)() parameter list

Return value
Number of sectors that can be written into the buffer.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

212 CHAPTER 7 Mass Storage Device Class (MSD)

7.4.3.6 (*pfWrite)()

Description
Writes one or more sectors to the storage medium.
Prototype
char (*pfWrite) (U8 Lun, U32 SectorIndex,
const void * pData, U32 NumSectors) ;
Parameter Description
Lun Logical unit number. Specifies for which drive the function is called.
SectorIndex Specifies the start sector for the write operation.
pData Pointer to data to be written to the storage medium.
NumSectors Number of sectors to write.

Table 7.27: (*pfWrite)() parameter list

Return value

0: Success
Any other value means error.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

213

7.4.3.7 (*pfMediumisPresent)()
Description

Checks if medium is present.

Prototype
char (*pfMediumIsPresent) (U8 Lun) ;
Parameter Description
Lun Logical unit number. Specifies for which drive the function is called.

Table 7.28: (*pfMediumIsPresent)() parameter list

Return value

1: Medium is present.
0: Medium is not present.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

214 CHAPTER 7 Mass Storage Device Class (MSD)

7.4.3.8 (*pfDelnit)()

Description
Deinitializes the storage medium.
Prototype
void (*pfDeInit) (U8 Lun);
Parameter Description
Lun Logical unit number. Specifies for which drive the function is called.

Table 7.29: (*pfDelnit)() parameter list

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

215

Chapter 8

Media Transfer Protocol Class
(MTP)

This chapter gives a general overview of the MTP class and describes how to get the
MTP component running on the target.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

216 CHAPTER 8 Media Transfer Protocol Class (MTP)

8.1 Overview

The Media Transfer Protocol (MTP) is a USB class protocol which can be used to trans-
fer files to and from storage devices. MTP is an official extension of the Picture Trans-
fer Protocol (PTP) designed to allow digital cameras to exchange image files with a
computer. MTP extends this by adding support for audio and video files.

MTP is an alternative to Mass Storage Device (MSD) and it operates at the file level in
contrast to MSD which reads and writes sector data. This type of operation gives MTP
some advantages over MSD:

e The cable can be safely removed during the data transfer without damaging the
file system.

e The file system does not have to be FAT (can be EFS or any other proprietary file
system)

e The application has full control as to which files are visible to the user. Selected
files or directories can be hidden.

e Virtual files can be presented.

e Host and target can access storage simultaneously without conflicts

MTP is supported by most operating systems "out of the box" and the installation of
additional drivers is not required.

emUSB-MTP supports the following capabilities:

File read

File write
Format

File delete
Directory create
Directory delete

The current implementation of emUSB-MTP has the following limitations:

e Setting of file attributes (read-only, hidden, etc.) is not supported
e The device does not generates any events

Get in contact with us if you need any of these features to be supported.

emUSB-MTP comes as a whole packet and contains the following:

Generic USB handling

An optional target USB driver

MTP device class implementation

Storage driver which uses emFile

Sample application showing how to work with MTP

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

8.1.1

217

Getting access to files

An MTP device will be displayed under the "Portable Devices" section in the "Com-
puter" window when connected to a PC running Microsoft Windows 7 operating sys-

tem:

W= [WCT 5

@Qv|“ ¢ Computer

Organize = Properties

» 3 Favorites
I |5 Libraries
- /M Computer

,E'" Metwork

- Storage device

|

v

Portable Media Player

M | + | | Search Co.. O |

il

k

|ﬂ|

> -

Systern properties

4 Hard Disk Drives (2]
&, Local Disk (C)
= Local Disk (E:)
4 Devices with Remaovable Starage (2)
L2 DVD RW Drive (D)
___Removable Disk (F:)
4 Portable Devices (1)

[, Storage device

The file and directories stored on the device can be accessed in the usual way using

the Windows Explorer:

=R O ==

@Qv|_ « Storage d

Organize =

- Favorites
il Libraries

M Computer
£, Local Disk (C2)
a Local Disk (E:)
L. Storage device

o= MTP volume

'E'ﬁy Metwork

8 items

>

evice » MTPvolume » - | *4 | | Search MT... D |

| Folder
|41 Audio.mp3
-g Doc.pdf
|5 Imagel .qif
|55 Imagel.gif
|5 Image3.qif
|55 Imaged.qgif

: || Readme,

UMO09001 User & Reference Guide for emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

218 CHAPTER 8 Media Transfer Protocol Class (MTP)

On the Ubuntu Linux operating system a connected MTP device is shown in the "Com-

puter" window:

& - o0 Computer
Devices

M Floppy Disk
® MTP device &)

21 GB Hard
Disk

B Computer

Computer
@ Home
K Desktop E
i@ Documents -
£l Downloads
[l Music
[[m| Pictures
@ Videos
Z_File System

@ Trash

MTP device

Network

[i& Browse Network

€ o Q search
I' = [H]
CD/DVD Floppy
Drive Drive:
Floppy Disk
a3
File System

UMO09001 User & Reference Guide for emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

219

The files and directories present on the MTP device can be easily accessed via GUI:

r b |

@ - 0 MTP device

Devices = MTP device . Q search
M Floppy Disk

ErrTem a & 92X

Computer Folder Audio.mp3 Doc.pdf

= Home GIF ellz GIF

K Deskkop Image1.gif Image2.gif Image3.qgif
@ Documents

| Downloads
[l Music

|[® Pictures

B Vvideos
Z_File System

T Trash

Image4.qif Readme.txt

Network

& Browse Network

On other operating systems the data stored on MTP devices can be accessed simi-
larly.

8.1.2 Additional information

For more technical details about MTP and PTP follow the links below:
MTP specification
PTP specification

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

http://www.usb.org/developers/devclass_docs/MTP_1.0.zip
http://www.usb.org/developers/devclass_docs/usb_still_img10.pdf

220

8.2 Configuration

8.2.1 Initial configuration

CHAPTER 8 Media Transfer Protocol Class (MTP)

To get emUSB-MTP up and running as well as doing an initial test, the configuration
as it is delivered with the sample application should not be modified.

8.2.2 Final configuration

The configuration must only be modified, when emUSB is integrated in your final
product. Refer to section Configuration on page 42 to get detailed information about
the generic information functions which has to be adapted.

8.2.3 Class specific configuration functions

Beside the emUSB-MTP configuration functions which must be called by the applica-
tion, the callback functions described below can be adapted before the emUSB-MTP
component is used in a final product. A sample implementation of these functions can
be found in the MTP_Fs_start.c application, located in the Application directory of

emUSB shipment.

Function

Description

emUSB-MTP configuration functions

USB_MTP_GetManufacturer ()

Returns the device manufacturer.

USB_MTP_GetModel ()

Returns the device model.

USB_MTP_GetDeviceVersion ()

Returns the firmware version of device.

USB_MTP_GetSerialNumber ()

Returns the serial number of device.

Table 8.1: List of class specific configuration functions

UMO09001 User & Reference Guide for emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

221

8.2.3.1 USB_MTP_GetManufacturer()
Description

Should return the name of the device manufacturer.

Prototype

const char * USB_MTP_GetManufacturer (void) ;

Example

const char * USB_MTP_GetManufacturer (void) {
return "SEGGER";
}

Additional information

It is a human-readable string identifying the manufacturer of this device. This string
is returned by the MTP device in the Manufacturer field of the Device Info dataset.
For more information, refer to MTP specification.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

222 CHAPTER 8 Media Transfer Protocol Class (MTP)

8.2.3.2 USB_MTP_GetModel()
Description

Should return the model of MTP device.

Prototype

const char * USB_MTP_GetModel (void) ;

Example

const char * USB_MTP_GetModel (void) {
return "Storage device";

)
Additional information

It is a human-readable string identifying the model of the device. This string is
returned by the MTP device in the Model field of the Device Info dataset. For more
information, refer to MTP specification.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

223

8.2.3.3 USB_MTP_GetDeviceVersion()
Description

Should return the version of MTP device.

Prototype

const char * USB_MTP_GetDeviceVersion (void) ;

Example

const char * USB_MTP_GetDeviceVersion (void) {
return "1.0";

)
Additional information

The string identifies the version of the firmware running on the device. This string is
returned by the MTP device in the Device Version field of the Device Info dataset. For
more information, refer to MTP specification.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

224 CHAPTER 8 Media Transfer Protocol Class (MTP)

8.2.3.4 USB_MTP_GetSerialNumber()
Description

Should return the serial number of MTP device.

Prototype

const char * USB_MTP_GetSerialNumber (void) ;

Example

const char * USB_MTP_GetSerialNumber (void) {
return "0123456789ABCDEF0123456789ABCDEF";
}

Additional information

The serial nhumber should contain exactly 32 hexadecimal characters. It must be
unique between the devices sharing the same model name and device version
strings. The MTP device returns this string in the serial Number field of the Device-
Info dataset. For more information, refer to MTP specification.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

225

8.2.4 Running the sample application

The directory application contains an sample application which can be used with
emUSB and the MTP component. To test the emUSB-MTP component, the application
should be built and then downloaded to target. Remove the USB connection and
reconnect the target to the host. The target will enumerate and will be accessible via
a file browser.

8.2.4.1 USB_MTP_Start.c in detail

The main part of the example application usB_MTP_Start.c is implemented in a sin-
gle task called MainTask ().

// MainTask () - excerpt from USB MTP Start.c

void MainTask (void) ;
volid MainTask (void) {
USB_Init();
_AddMTP () ;
USB_Start();
while (1) {
while ((USB GetState() & (USB_STAT CONFIGURED | USB_STAT SUSPENDED))
= USB STAT CONFIGURED) {
BSP _ToggleLED (0) ;
USB_0S_Delay (50) ;
}
BSP SetLED(0) ;
USB_MTP Task();
}
}

The first step is to initialize the USB core stack by calling uss_1Init (). The function
_AdaMTP () configures all required endpoints, adds the MTP component to emUSB and
assigns a storage medium to the MTP component. More than one storage medium can
be added.

// _AddMTP () - excerpt from USB MTP_ Start.c

static void AddMTP (void) {
USB_MTP_INIT DATA InitData;
USB_MTP_INST DATA InstData;

/7
// Add the MTP component to USB stack.
/7

InitData.EPIn

USB_AddEP (1, USB TRANSFER TYPE BULK,
USB_MAX PACKET SIZE, NULL, 0);
USB_AddEP (0, USB_TRANSFER TYPE BULK,
USB_MAX PACKET SIZE, _acReceiveBuffer,
sizeof (_acReceiveBuffer)) ;
USB_AddEP (1, USB TRANSFER TYPE INT, 10, NULL, O0);

InitData.EPOut

InitData.EPInt

InitData.pObjectList = aObjectList;
InitData.NumBytesObjectList = sizeof(aObjectList);
InitData.pDataBuffer = aDataBuffer;

InitData.NumBytesDataBuffer
USB_MTP Add(&InitData);
//
// Add a storage driver to MTP component.
//
InstData.pAPI B N
InstData.sDescription "MTP volume";
InstData.sVolumeld "0123456789";
InstData.DriverData.pRootDir "y
USB_MTP AddStorage (&InstData);

}

Sizeof (_aDataBuffer);

&USB MTP StorageFS;

The size of _acReceiveBuffer and _abDataBuffer buffers must be a multiple of USB
max packet size. The sample uses the UsB_MAX_PACKET_SIZE define which is set to
the correct max packet size value. The size of the buffer allocated for the object list,
_aObjectList must be chosen according to the number of files on the storage
medium. emUSB-MTP assigns an internal object to each file or directory requested by
the USB host. The USB host can request all the files and directories present at once

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

226

CHAPTER 8 Media Transfer Protocol Class (MTP)

or it can request files and directories as user browses them. An object requires a
minimum of 54 bytes. The actual humber of bytes allocated depends on the length of

the full path to file/directory.

8.3 Target API

Function

Description

API functions

USB_MTP_Add()

Adds an MTP interface to the USB stack.

USB_MTP_AddStorage ()

Adds a storage device to the emUSB-MTP.

USB_MTP_Task ()

Handles the MTP communication.

Data structures

USB_MTP_FILE_INFO

Stores information about a file or directory.

USB_MTP_INIT_DATA

Stores the MTP initialization parameters.

USB_MTP_INST_DATA

Stores the initialization parameters of storage
driver.

USB_MTP_INST_DATA_DRIVER

Stores parameters that are passed to storage
driver.

USB_MTP_STORAGE_APIT

Stores callbacks to the functions of storage driver.

USB_MTP_STORAGE_INFO

Stores information about the storage medium.

Table 8.2: List of emUSB MTP interface functions and data structures

UMO09001 User & Reference Guide for emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

227

8.3.1 API functions

8.3.1.1 USB_MTP_Add()

Description
Adds an MTP-class interface to the USB stack.

Prototype

void USB_MTP_Add(const USB_MTP_INIT_DATA * pInitData);
Parameter Description

pInitData Pointer to a usB_MTP_INIT_DATA structure.

Table 8.3: USB_MTP_Add() parameter list

Additional information

After the initialization of USB core, this is the first function that needs to be called
when an MTP interface is used with emUSB. The structure UsB_MTP_INIT_DATA has to
be initialized before usB_MTP_aAdd() is called. Refer to USB_MTP_INIT_DATA on
page 231 for more information.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

228 CHAPTER 8 Media Transfer Protocol Class (MTP)

8.3.1.2 USB_MTP_AddStorage()

Description
Adds a storage device to emUSB-MTP.

Prototype
void USB_MTP_AddStorage (const USB_MTP_INST_DATA * pInstData);
Parameter Description
Pointer to a use_MTP_INST_DATA structure which contains the
pInstData ;
parameters of the added storage driver.

Table 8.4: USB_MTP_AddStorage() parameter list

Additional information

It is necessary to call this function right after usB_MTP_aAdd () was called.

This function adds a storage device such as a hard drive, MMC/SD card or NAND flash
etc., to emUSB-MTP, which will be used as source/destination of data exchange with
the host. The structure UsSB_MTP_INST_DATA has to be initialized before
USB_MTP_AddStorage () is called. Refer to USB_MTP_INST_DATA on page 232 for
more information.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

229

8.3.1.3 USB_MTP_Task()
Description

Task which handles the MTP communication.

Prototype

void USB_MTP_Task (void) ;

Additional information

The UsB_MTP_Task () should be called after the USB device has been successfully
enumerated and configured. The function returns when the USB device is detached or
suspended.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

230 CHAPTER 8 Media Transfer Protocol Class (MTP)

8.3.2 Data structures

8.3.2.1 USB_MTP_FILE_INFO
Description

Structure which stores information about a file or directory.

Prototype

typedef struct {
char * pFilePath;
char * pFileName;

U32 FileSize;

Uu32 CreationTime;

U32 LastWriteTime;

U8 IsDirectory;

U8 IsWriteProtected;

U8 acId[16];
} USB_MTP_FILE_INFO;

Member Description

pFilePath Pointer to full path to file.
pFileName Pointer to beginning of file/directory name in pFilePath
FileSize Size of the file in bytes.
CreationTime Time and date when the file was created.
LastWriteTime Time and data when the file was last modified.
IsDirectory Set to 1 if the path points to a directory.
IsWriteProtected Set to 1 if the file can not be modified.
acId Unique file/directory identifier.

Table 8.5: USB_MTP_FILE_INFO elements

Additional Information

The date and time is formatted as follows:

Bit Value -
range range Description
0-4 0-29 2-second count
5-10 0-59 Minutes
11-15 0-23 Hours
16-20 1-31 Day of month
21-24 1-12 Month of year
25-31 0-127 Number of years since 1980

acId should unique for each file and directory on the file system and it should be per-
sistent between MTP sessions.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

231

8.3.2.2 USB_MTP_INIT_DATA

Description
Structure which stores the parameters of the MTP interface.
Prototype
typedef struct {
us EPIn;
us EPOut;
us EPInt;
void * pObjectList;
U32 NumBytesObjectList;
void * pDataBuffer;
U332 NumBytesDataBuffer;
//
// The following fields are used internally by the MTP component.
//
U8 InterfaceNum;
Uu32 NumBytesAllocated;
U32 NumObjects;

} USB_MTP_INIT_DATA;

Member Description
EPIn Endpoint for receiving data from host.
EPOut Endpoint for sending data to host.
EPInt Endpoint for sending events to host.

. . Pointer to a memory region where the list of MTP objects is

pObjectList e
NumBytesObjectList | Number of bytes allocated for the object list.
pDataBuffer Pointer to a memory region to be used as communication buffer.
NumBytesDataBuffer |Number of bytes allocated for the data buffer.

Table 8.6: USB_MTP_INIT_DATA elements

Additional Information

This structure holds the endpoints that should be used with the MTP interface. Refer
to USB_AddEP() on page 57 for more information about how to add an endpoint.

The number of bytes in the pbataBuffer should be a multiple of USB max packet
size. The number of bytes in the object list depends on the number of files/directo-
ries on the storage medium. An object is assigned to each file/directory when the
USB host requests the object information for the first time.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

232 CHAPTER 8 Media Transfer Protocol Class (MTP)

8.3.2.3 USB_MTP_INST_DATA
Description

Structure which stores the parameters of storage driver.

Prototype

typedef struct {
const USB_MTP_STORAGE_API * pAPI;

const char * gDescription;
const char * sVolumeId;
USB_MTP_INST_DATA_DRIVER DriverData;

} USB_MTP_INST_ DATA;

Member Description
PAPI Pointer to a structure that holds the storage device driver API.
sDescription Human-readable string which identifies the storage.
sVolumeId Unique volume identifier.
Driver data that are passed to the storage driver. Refer to
DriverData USB_MTP_INST_DATA_DRIVER on page 233 for detailed infor-
mation about how to initialize this structure.

Table 8.7: USB_MTP_INST_DATA elements

Additional Information

The MTP device returns the sDescription string in the Storage Description param-
eter and the svolumeId in the Volume Identifier of the StorageInfo dataset. For
more information, refer to MTP specification.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

233

8.3.2.4 USB_MTP_INST_DATA_DRIVER

Description
Structure which stores the parameters passed to storage driver.

Prototype

typedef struct {
const char * pRootDir;
} USB_MTP_INST_DATA_ DRIVER;

Member Description

pRootDir Path to directory to be used as the root of the storage.
Table 8.8: USB_MTP_INST_DATA_DRIVER

Additional Information

pRootDir can point to the root of the file system or any other subdirectory.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

234

CHAPTER 8

8.3.2.5 USB_MTP_STORAGE_API

Media Transfer Protocol Class (MTP)

Structure that contains callbacks to the storage driver.

Description

Prototype

typedef struct {
void (*pfInit)
void (*pfGetInfo)
int (*pfFindFirstFile)
int (*pfFindNextFile)
int (*pfOpenFile)
int (*pfCreateFile)
int (*pfReadFromFile)
int (*pfWriteToFile)
int (*pfCloseFile)
int (*pfRemoveFile)
int (*pfCreateDir)
int (*pfRemoveDir)
int (*pfFormat)
int (*pfRenameFile)

void (*pfDelInit)
} USB_MTP_STORAGE_API;

(U8 Unit,

const USB_MTP_INST_DATA_ DRIVER * pDriverData) ;
(U8 Unit,
USB_MTP_STORAGE_INFO * pStorageInfo);
(U8 Unit,

const char * pDirPath,
USB_MTP_FILE_INFO * pFilelInfo);
(U8 Unit,
USB_MTP_FILE_INFO * pFileInfo);
(us Unit,

const char * pFilePath) ;
(U8 Unit,

const char * pDirPath,
USB_MTP_FILE_INFO * pFileInfo);
(U8 Unit,

U32 Off,

void * pData,

U32 NumBytes) ;
(U8 Unit,

U32 Off,

const void * pData,

U32 NumBytes) ;
(U8 Unit) ;

(U8 Unit,

const char * pFilePath) ;
(us Unit,

const char * pDirPath,
USB_MTP_FILE_INFO * pFileInfo);
(U8 Unit,

const char * pDirPath) ;
(U8 Unit) ;

(U8 Unit,
USB_MTP_FILE_INFO * pFileInfo);
(U8 Unit) ;

Member Description
(*pfInit) () Initializes the storage medium.
Returns information about the storage medium such as
(*pfGetInfo) () - .
storage capacity and the available free space.
(*pfFindFirstFile) () | Returns information about the first file in a given directory.
(*pfFindNextFile) () | Moves to next file and returns information about it.
(*pfOpenFile) () Opens an existing file.
(*pfCreateFile) () Creates a new file.
(*pfReadFromFile) () |Reads data from the current file.
(*pfWriteToFile) () Writes data to current file.
(*pfCloseFile) () Closes the current file.
(*pfRemoveFile) () Removes a file from storage medium.
(*pfCreateDir) () Creates a new directory.
(*pfRemoveDir) () Removes a directory from storage medium.
(*pfFormat) () Formats the storage.
Changes the name of a file or directory
(*pfDeInit) () Deinitializes the storage medium.

Table 8.9: List of callback functions of USB_MTP_STORAGE_API

Additional Information

USB_MTP_STORAGE_APTI is used to retrieve information from the storage driver or to
access data that needs to be read or written. Detailed information can be found in
Storage Driver on page 236.

UMO09001 User & Reference Guide for emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

235

8.3.2.6 USB_MTP_STORAGE_INFO
Description

Structure which stores information about the storage medium.
Prototype

typedef struct {
U32 NumKbytesTotal;
U32 NumKbytesFreeSpace;
Ul6 FSType;
U8 IsWriteProtected;
U8 1IsRemovable;

} USB_MTP_STORAGE_INFO;

Member Description
NumKbytesTotal Capacity of storage medium in Kbytes.
NumKbytesFreeSpace |Available free space on storage medium in Kbytes.
FSType Type of file system as specified in MTP.
IsWiriteProtected Set to 1 if the storage medium can not be modified.
IsRemovable Set to 1 if the storage medium can be removed from device.

Table 8.10: USB_MTP_STORAGE_INFO

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

236 CHAPTER 8 Media Transfer Protocol Class (MTP)

8.4 Storage Driver

This section describes the storage interface in detail.

8.4.1 General information

The storage interface is handled through an API-table, which contains all relevant
functions necessary for read/write operations and initialization. Its implementation
handles the details of how data is actually read from or written to memory.

This release comes with USB_MTP_StorageFsS driver which uses emFile to access the
storage medium.

8.4.2 Interface function list

As described above, access to a storage media is realized through an API-function
table of type USB_MTP_STORAGE_API. The structure is declared in usB_MTP.h and it is
described in section Data structures on page 230.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

237

8.4.3 USB_MTP_STORAGE_API in detail

8.4.3.1 (*pfInit)()
Description
Initializes the storage medium.

Prototype
void (*pfInit) (U8 Unit, const USB_MTP_INST DATA_DRIVER * pDriverData) ;

Parameter Description

Logical unit number. Specifies for which storage medium the func-
tion is called.

Pointer to a UsSB_MTP_INST_DATA_DRIVER structure that contains all
. information that are necessary for the driver initialization. For
pbriverData detailed information about the UsB_MTP_INST_DATA_ DRIVER struc-
ture, refer to USB_MTP_INST_DATA_DRIVER on page 233.

Table 8.11: (*pfInit)() parameter list

Unit

Additional information

This function is called when the storage driver is added to emUSB-MTP. It is the first
function of the storage driver to be called.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

238 CHAPTER 8 Media Transfer Protocol Class (MTP)

8.4.3.2 (*pfGetinfo)()
Description

Returns information about storage medium such as capacity and available free space.

Prototype
void (*pfGetInfo) (U8 Unit, USB_MTP_STORAGE_INFO * pStorageInfo);

Parameter Description

Logical unit number. Specifies for which storage medium the func-
tion is called.

Pointer to a USB_MTP_STORAGE_INFO structure. For detailed infor-
pStorageInfo | mation about the USB_MTP_STORAGE_INFO structure, refer to
USB_MTP_STORAGE_INFO on page 235.

Table 8.12: (*pfGetInfo)() parameter list

Unit

Additional information

Typically, this function is called right after the device is connected to USB host when
the USB host requests information about the available storage mediums.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

239

8.4.3.3 (*pfFindFirstFile)()
Description

Returns information about the first file in a specified directory.

Prototype

int (*pfFindFirstFile) (U8 Unit,
const char * pDirPath,
USB_MTP_FILE_INFO * pFileInfo);

Parameter Description
Unit Logical unit number. Specifies for which storage medium the func-
tion is called.
pDirPath Full path to the directory to be searched.
FileInf IN: ---
pri-einto OUT: Information about the file/directory found.

Table 8.13: (*pfFindFirstFile)() parameter list

Return value

== File/directory found
== No more files/directories found
<0 An error occurred

Additional information

The "." and ".." directory entries which are relevant only for the file system should
be skipped.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

240 CHAPTER 8 Media Transfer Protocol Class (MTP)

8.4.3.4 (*pfFindNextFile)()
Description

Moves to next file and returns information about it.

Prototype
int (*pfFindNextFile) (U8 Unit, USB_MTP_FILE_INFO * pFileInfo);

Parameter Description

Unit Logical unit number. Specifies for which storage medium the func-
* tion is called.

pFileInfo s ===

OUT: Information about the file/directory found.
Table 8.14: (*pfFindNextFile)() parameter list

Return value

== File/directory found
== No more files/directories found
<0 An error occurred

Additional information

The "." and ".." directory entries which are relevant only for the file system should
be skipped.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

241

8.4.3.5 (*pfOpenFile)()
Description

Opens a file for reading.

Prototype
int (*pfOpenFile) (U8 Unit,
const char * pFilePath);
Parameter Description
Unit Logical unit number. Specifies for which storage medium the func-
* tion is called.
. IN: Full path to file.
pFilePath OUT ---.

Table 8.15: (*pfOpenFile)() parameter list

Return value

=0 File opened
1=0 An error occurred

Additional information

This function is called at the beginning of a file read operation. It is followed by one
or more calls to (*pfReadFromFile) (). At the end of data transfer the MTP module
closes the file by calling (*pfCcloseFile) (). If the file does not exists an error should
be returned. The MTP module opens only one file at a time.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

242

CHAPTER 8 Media Transfer Protocol Class (MTP)

8.4.3.6 (*pfCreateFile)()

Description
Opens a file for writing.
Prototype
int (*pfCreateFile) (U8 Unit,
const char * pDirPath,
USB_MTP_FILE_INFO * pFileInfo);
Parameter Description
Unit Logical unit number. Specifies for which storage medium the func-
* tion is called.
. IN: Full path to directory where the file should be created.
pDirPath .
OuUT: ---
IN: Information about the file to be created. pFileName points to
FileTnf the name of the file.
p © © OUT: prilePath points to full path of created file, pFileName points
to the beginning of file name in pFilePath.

Table 8.16: (*pfCreateFile)() parameter list

Return value

==0 File created and opened
=0 An error occurred

Additional information

This function is called at the beginning of a file write operation. The name of the file
is specified in the prFileName filed of pFileInfo. If the file exists it should be trun-
cated to 0. When a file is created, the call to (*pfcreateFile)() is followed by one or
more calls to (*pfWriteToFile) (). If CreationTime and LastWriteTime in
pFileInfo are not 0 should be used instead of the time stamps generated by the file
system.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

243

8.4.3.7 (*pfReadFromFile)()
Description

Reads data from the current file.

Prototype
int (*pfReadFromFile) (U8 Unit,
U32 Off,
void * pbData,
U32 NumBytes) ;
Parameter Description
Unit Logical unit number. Specifies for which storage medium the func-
* tion is called.
Off Byte offset where to read from.
Dat IN: ---
prata OUT: Data read from file.
NumBytes Number of bytes to read from file.

Table 8.17: (*pfReadFromFile)() parameter list

Return value

==0 Data read from file
1=0 An error occurred

Additional information

The function reads data from the file opened by (*pfOpenFile) ().

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

244 CHAPTER 8 Media Transfer Protocol Class (MTP)

8.4.3.8 (*pfWriteToFile)()

Description
Writes data to current file.
Prototype
int (*pfWriteToFile) (U8 Unit,
U32 Ooff,
const void * pbData,
U32 NumBytes) ;
Parameter Description
Unit Logical unit number. Specifies for which storage medium the func-
* tion is called.
Off Byte offset where to write to.
Dat IN: Data to write to file
pbata OuUT: ---
NumBytes Number of bytes to write to file.

Table 8.18: (*pfWriteToFile)() parameter list

Return value

==0 Data written to file
1=0 An error occurred

Additional information

The function writes data to file opened by (*pfCreateFile) ().

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

8.4.3.9 (*pfCloseFile)()

Description

Closes the current file.

245

Prototype
int (*pfCloseFile) (U8 Unit);
Parameter Description
Lun Logical unit number. Specifies for which storage medium the func-
v tion is called.

Table 8.19: (*pfCloseFile)() parameter list

Return value

==0 File closed
1=0 An error occurred

Additional information

The function closes the file opened by (*pfCreateFile) () or (*pfOpenFile) ().

UMO09001 User & Reference Guide for emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

246 CHAPTER 8 Media Transfer Protocol Class (MTP)

8.4.3.10 (*pfRemovefFile)()

Description
Removes a file/directory from the storage medium.
Prototype
int (*pfRemoveFile) (U8 Unit,
const char * pFilePath);

Parameter Description
Unit Logical unit number. Specifies for which drive the function is called.
pFilePath éNU:TI.:u_I_I_path to file/directory to be removed

Table 8.20: (*pfRemoveFile)() parameter list

Return value

==0 File removed
=0 An error occurred

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

247

8.4.3.11 (*pfCreateDir)()
Description

Creates a directory on the storage medium.

Prototype
int (*pfCreateDir) (U8 Unit,
const char * pDirPath,
USB_MTP_FILE_INFO * pFileInfo);
Parameter Description
Unit Logical unit number. Specifies for which storage medium the func-
* tion is called.
. IN: Full path to directory where the directory should be created.
pDirPath .
OuUT: ---
IN: Information about the directory to be created. pFileName points
FileInf to the directory name.
priieinto OUT: prilePath points to full path of directory, pFileName points to
the beginning of directory name in pFilePath

Table 8.21: (*pfCreateDir)() parameter list

Return value

==0 Directory created
1=0 An error occurred

Additional information

If CreationTime and LastWriteTime in pFileInfo are not 0 should be used instead
of the time stamps generated by the file system.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

248 CHAPTER 8 Media Transfer Protocol Class (MTP)

8.4.3.12 (*pfRemoveDir)()

Description
Removes a directory and its contents from the storage medium.
Prototype
int (*pfRemoveDir) (U8 Unit,
const char * pDirPath) ;
Parameter Description
Unit Logical unit number. Specifies for which storage medium the func-
* tion is called.
. IN: Full path to directory to be removed.
pDirPath OUT: ---

Table 8.22: (*pfRemoveDir)() parameter list

Return value

=0 Directory removed
=0 An error occurred

Additional information

The function should remove the directory and the entire file tree under it.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

249

8.4.3.13 (*pfFormat)()
Description

Initializes the storage medium.

Prototype
int (*pfFormat) (U8 Unit) ;

Parameter Description

Logical unit number. Specifies for which storage medium the func-
tion is called.
Table 8.23: (*pfFormat)() parameter list

Unit

Return value
==0 Storage medium initialized

1=0 An error occurred
Additional information

If prootDir configured in the call to (*pfInit) () points to a subdirectory of the file
system, the storage medium should not be formatted. Instead, all the files and direc-
tories from prootDir should be removed.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

250 CHAPTER 8 Media Transfer Protocol Class (MTP)

8.4.3.14 (*pfRenameFile)()
Description
Changes the name of a file or directory.

Prototype
int (*pfRenameFile) (U8 Unit, USB_MTP_FILE_INFO * pFileInfo);

Parameter Description

Logical unit number. Specifies for which storage medium the func-
tion is called.

IN: Information about the file/directory to be renamed. pFilePath
points to the full path and prileName points to the new name.
pFileInfo OUT: pFilepPath points to full path of file/directory with the new
name, pFileName points to the beginning of file/directory name in
pFilePath. The other structure fields should also be filled.

Table 8.24: (*pfRenameFile)() parameter list

Unit

Return value

==0 File/directory renamed
=0 An error occurred

Additional information

Only the name of the file/directory should be changed. The path to parent directory
should remain the same.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

8.4.3.15 (*pfDelnit)()

251

Description
Deinitializes the storage medium.
Prototype
void (*pfDeInit) (U8 Unit) ;
Parameter Description
Unit L_ogic_al unit number. Specifies for which storage medium the func-
tion is called.

Table 8.25: (*pfDelInit)() parameter list

Additional information

Typically called when the application calls UsB_stop () to de-initialize emUSB.

UMO09001 User & Reference Guide for emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

252 CHAPTER 8 Media Transfer Protocol Class (MTP)

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

253

Chapter 9

Communication Device Class
(CDC)

This chapter describes how to get emUSB up and running as a CDC device.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

254 CHAPTER 9 Communication Device Class (CDC)

9.1 Overview

The Communication Device Class (CDC) is an abstract USB class protocol defined by
the USB Implementers Forum. This protocol covers the handling of the following
communication flows:

e VirtualCOM/Serial interface

e Universal modem device

e ISDN communication

e Ethernet communication

This implementation of CDC currently supports the virtual COM/Serial interface, thus
the USB device will behave like a serial interface.

Normally, a custom USB driver is not necessary, because a kernel mode driver for
USB-CDC serial communication is delivered by major Microsoft Windows operating
systems. For installing the USB-CDC serial device an .inf file is needed, which is
also delivered. Linux handles USB 2 virtual COM ports since Kernel Ver. 2.4. Further
information can be found in the Linux Kernel documentation.

9.1.1 Configuration

The configuration section will later on be modified to match the real application. For
the purpose of getting emUSB up and running as well as doing an initial test, the
configuration as delivered should not be modified.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

9.2 The example application

255

The start application (in the Application subfolder) is a simple echo server, which
can be used to test emUSB. The application receives data byte by byte and sends it

back to the host.

Source code of USB_CDC_Start.c:

/**

* SEGGER Microcontroller GmbH & Co. KG

* Solutions for real time microcontroller applications

EE R S S R S R b b S b A b I S P S R S I S S b S b I b I A S I S I b b b I b I I
File : USB_CDC_sStart.c

Purpose : Start Application for using the device as CDC device
————————— END-OF-HEADER —=——-==———————————m e %/

#include <stdio.h>
#include "BSP.h"
#include "USB.h"
#include "USB_CDC.h"

/***
*

* Static code

*

ER R R R R R I R I I R I I I I I R I I I I I I R R R I I I R R I R I R

*/

/***

*

* _OnLineCoding

*

* Function description

* Called whenever a "SetLineCoding" Packet has been received

*

* Notes

* (1) Context

* This function is called directly from an ISR in most cases.
*/

static void _OnLineCoding (USB_CDC_LINE_CODING * pLineCoding) {
#if 0
printf ("DTERate=%u, CharFormat=%u, ParityType=%u, DataBits=%u\n",

pLineCoding->DTERate,
pLineCoding->CharFormat,
pLineCoding->ParityType,
pLineCoding->DataBits) ;

#endif

/***

_AddcDC

Function description
Add communication device class to USB stack

b S T

/

static void _AddCDC (void) {

static U8 _abOutBuffer [USB_MAX PACKET_SIZE];
USB_CDC_INIT_DATA InitData;

InitData.EPOut = USB_AJJEP (USB_DIR_OUT, USB_TRANSFER_TYPE_BULK, O,
_abOutBuffer, USB_MAX PACKET_SIZE) ;

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

256 CHAPTER 9 Communication Device Class (CDC)

InitData.EPIn USB_AddJdEP (USB_DIR_IN, USB_TRANSFER_TYPE_BULK, 0, NULL, 0);
InitData.EPInt USB_AddJdEP (USB_DIR_IN, USB_TRANSFER_TYPE_INT, 8, NULL, O0);
USB_CDC_Add (&InitDhata) ;

USB_CDC_SetOnLineCoding (_OnLineCoding) ;

/***

*

* Public code
*

PR E R R R R

*/

/***

*

* Get information that are used during enumeration

x/
/***
USB_GetVendorId

Function description
Returns vendor Id

% % o kX

/
Ul6 USB_GetVendorId(void) {
return 0x8765;

/***

USB_GetProductId

Function description
Returns product Id

% X o kX

/
Ul6 USB_GetProductId(void) {
return 0x1111;

/***

USB_GetVendorName

Function description
Returns vendor name

% % o kX

/
const char * USB_GetVendorName (void) {
return "Vendor";

/***

USB_GetProductName

Function description
Returns product name

% X o kX

/
const char * USB_GetProductName (void) {
return "CDC device";

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

257

/*******************~k~k~k~k~k~k~k~k~k***

USB_GetSerialNumber

Function description
Returns serial number

L T

/
const char * USB_GetSerialNumber (void) {
return "13245678";

/********************~k~k~k~k~k~k~k~k***

MainTask

USB handling task.
Modify to implement the desired protocol

* % % ok % X%

/
void MainTask (void) ;
void MainTask (void) {
USB_Init();
_AddcCDC () ;
USB_Start () ;
while (1) {
char acl[64];
int NumBytesReceived;
//
// Wait for configuration
//
while ((USB_GetState() & (USB_STAT_CONFIGURED | USB_STAT_SUSPENDED))
= USB_STAT CONFIGURED) {
BSP_ToggleLED(Q) ;
USB_0OS_Delay (50) ;
}
BSP_SetLED(O0) ;
//
// Receive at maximum of 64 Bytes. If less data has been received,
// this should be OK.
//
NumBytesReceived = USB_CDC_Receive(&ac[0], sizeof (ac));
if (NumBytesReceived > 0) {
USB_CDC_Write(&ac[0], NumBytesReceived) ;

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

258 CHAPTER 9 Communication Device Class (CDC)

9.3 Installing the driver

When the emUSB-CDC sample application is up and running and the target device is
plugged into the computer's USB port Windows will detect the new hardware.

Found New Hardware Wizard

Welcome to the Found New
Hardware Wizard

5

Thiz wizard helpz you install a device driver for a
hardware device.

To continue, click Next.

< Back

Cancel |

The wizard will ask you to help it find the correct driver files for the new device. First
select the Search for a suitable driver for my device (recommended) option,
then click the Next button.

Found New Hardware Wizard

Welcome to the Found New
Hardware Wizard

5

Thiz wizard helpz you install a device driver for a
hardware device.

To continue, click Next.

< Back

Cancel

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

259

In the next step, you need to select the Specify a location option and click the

Next button.

Found New Hardware Wizard

Locate Driver Files
Wwhere do you want Windows to search for driver files?

Search for driver files for the following hardware device:

@ Product

The wizard zearches for suitable drivers in itz driver databasze on your computer and in

any of the following optional search locations that you specify.

To start the gearch, click Mest. If you are searching on a floppy disk or CD-ROM drive,

inzert the floppy disk or CD before clicking Mext.
Optional search locations:

= | Fitpmy disk dfives

U

V' Specify a lacation

™ Microsoft Windows Update

< Back I Mest » I

Cancel |

Click Browse to open the directory navigator.

Found New Hardware Wizard

Inzert the manufacturer's installation disk into the drive
selected, and then click OK.

=

Cancel

[X]
_ Coredl |

LCopy manufacturer's files from:

|CAUSBStack\COC

j Browse. .. |

Use the directory navigator to select c:\usBstack\cDc (or your chosen location) and
click the Open button to select usbser.inf.

Locate File EHE
Lack jr: | =3 CDC = - ® ok E-
a uzhszer.inf
File name: j DOpen I
Filez of type: ISetup Infarmation [*.inf] j Cancel |

UMO09001 User & Reference Guide for emUSB

© 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

260 CHAPTER 9 Communication Device Class (CDC)

The wizard confirms your choice and starts to copy, when you click the Next button.

Found New Hardware Wizard

Driver Files Search Results o
The wizard has finished searching for driver files for your hardware device.

The wizard found a driver for the following device:

@ Product

“windows found a driver for this device. Ta install the driver Windows found, click Mest.

= c:hwuzbstackhedohusbserinf

Cancel |

At this point, the installation is complete. Click the Finish button to dismiss the wiz-
ard.

Found New Hardware Wizard

Completing the Found New
Hardware Wizard

_\> USE COC zerial port emulation

Windows has finizhed installing the software for thiz device.

To close this wizard, click Finizh.

< Back [Carce|

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

261

9.3.1 The .inf file

The .inf file is required for installation.

It looks as follows:

; Device installation file for
; USB 2 COM port emulation

[Version]

Signature="$CHICAGOS"

Class=Ports
ClassGuid={4D36E978-E325-11CE-BFC1-08002BE10318}
Provider=%MFGNAMES%

DriverVer=01/08/2007,2.2.0.0
LayoutFile=Layout.inf

[Manufacturer]
$MFGNAME%=USB2SerialDevicelist

[USB2SerialDevicelist]
%USB2SERIAL%=USB2Seriallnstall, USB\VID 8765&PID 0234

[DestinationDirs]
USB2SerialCopyFiles=12
DefaultDestDir=12

[USB2SeriallInstall]
CopyFiles=USB2SerialCopyFiles
AddReg=USB2SerialAddReg

[USB2SerialCopyFiles]
usbser.sys,,,0x20

[USB2SerialAddReq]

HKR, , DevLoader, , *ntkern

HKR, ,NTMPDriver, ,usbser.sys

HKR, , EnumPropPages32,, "MsPorts.dll,SerialPortPropPageProvider"

[USB2SerialInstall.Services]
AddService = usbser,0x0002,USB2SerialService

[USB2SerialService]
DisplayName = %USBZSERIAL_DISPLAY_NAME%

ServiceType = 1 ; SERVICE KERNEL DRIVER
StartType = 3 ; SERVICE_DEMAND_START
ErrorControl = 1 ; SERVICE ERROR NORMAL
ServiceBinary = %12%\usbser.sys

LoadOrderGroup = Base

[Strings]

MEFGNAME= "Manufacturer"

USB2SERIAL = "USB CDC serial port emulation"

USB2SERIAL DISPLAY NAME = "USB CDC serial port emulation"
red - required modifications

green - possible modifications

You have to personalize the .inf file on the red marked positions. Changes on the
green marked positions are optional and not necessary for the correct function of the
device.

Replace the red marked positions with your personal vendor Id (VID) and product Id
(PID). These changes have to be identical with the modifications in the configuration
file UsB_config.h to work correctly.

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

262 CHAPTER 9 Communication Device Class (CDC)

The required modifications of the file UsB_conf.h is described in the configuration
chapter.

9.3.2 Installation verification

After the device has been installed, it can verify that the installation of the USB

device was successful. Hence, take a look in the device manager to check that the
USB device displayed.

The following steps perform:

e Open the Run dialog box from the start menu.
Type devicemgmt.msc and click OK:

Run 21=]

Type the name of a program, folder, document, or
Internet resource, and Windows will open it For you,

Qpen: I devmgmk, msc j

OF I Cancel | Browse. .. |

The Device Manager window is displayed and may look like this:

L, Device Manager

J Action View |J = = |

[[0 x]

EIE

J

D Digk drives
Dizplay adapters

4} DVD/CD-ROM drives
2 IDE ATASATAPI controllers
&2 Kepboards
™y Mice and ather pointing devices
W Moritors
B3 Metwork adapters
Rt (COM & LPT)

= SCS1 and RAID controllers

= Sound, video and game controllers

W System devices
-8 Universal Serial Bus controllers

| | |
Click on the Ports (COM & LPT) branch to open the branch:

L, Device Manager

J Action View |J = = |

[[0 x]

EIE

[

D Digk drives
Dizplay adapters
4} DVD/CD-ROM drives
2 IDE ATASATAPI controllers
&2 Kepboards
™y Mice and ather pointing devices
W Moritors
B3 Metwork adapters
[COM & LPT)
Communications Port [COM1)
Communications Port [COMZ2)
ELCP Printer Port [LPT1]
USE COC zerial port emulation [COk4]
= SCS1 and RAID controllers
= Sound, video and game controllers
System devices

Universal Serial Bus controllers

| | |
You should see the USB CDC serial port emulation (COMx), where x gives the

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

263

COM port number has Windows has assigned to the device.

9.3.3 Testing communication to the USB device

The start application is a simple echo server. This means each character that is
entered and sent through the virtual serial port will be sent back by the USB device
and will be shown by a terminal program. To test the communication to the device, a
terminal program such as HyperTerminal, should be used.

This section shows how to check the communication between host and USB host
using the HyperTerminal program.

e Open the Run dialog box from the start menu.

Type hypertrm.exe and press Enter key to open the HyperTerminal.
HyperTerminal displays the Connection Description dialog.
Give this new connection a name as shown below and click OK.

Tz New Connection - HyperT erminal

File Edit ‘iew Call Transfer Help

Connection Description EHE

Enter a name and choose an icon for the connection:

Mame:

INew 1ISB 25 erial Cornectior]
=T
=
o "

(] 3 I Cancel |
Dizconnected Auta detect Auta detect SCROLL |CAF'S |NUM |Eapture Frint echo 7

UMO09001 User & Reference Guide for emUSB © 2010 - 2014 SEGGER Microcontroller GmbH & Co. KG

264 CHAPTER 9 Communication Device Class (CDC)

e After creating the new connection, the Connect To dialog box is displayed and
will ask which COM port you want to use. Click on the arrow for the Connect
Using drop down box. Select COMx, where x is the port number that is assigned
to your device by Windows. To confirm your choice click OK.

“g New USB2Serial Connection - HyperT erminal

File Edit “iew Call Transfer Help
Connect To EHE
" Mew USB2Serial Cannection
Enter details for the phone number that you want to dial:
LCountry/region: IGermany (49] j
Area code: |21 03
Phone number: I
o ka
(] 3 I Cancel |
Dizconnected |Aut0 detect |Aut0 detect |SCF|DLL |CAF'S |NUM |Eapture |F'rint echa 7

e The COMx Property dialog